import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("apple/DCLM-Baseline-7B-8k") model = AutoModelForCausalLM.from_pretrained("apple/DCLM-Baseline-7B-8k") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) prompt = "".join([f"{'[|Human|] ' if msg['role'] == 'user' else '[|AI|] '}{msg['content']}" for msg in messages]) inputs = tokenizer(prompt, return_tensors="pt") gen_kwargs = { "max_new_tokens": max_tokens, "top_p": top_p, "temperature": temperature, "do_sample": True, "repetition_penalty": 1.1 } with torch.no_grad(): output = model.generate(inputs['input_ids'], **gen_kwargs) response = tokenizer.decode(output[0].tolist(), skip_special_tokens=True)[len(prompt):] yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()