RMWeerasinghe's picture
Initial Commit
99e744f
raw
history blame
11 kB
import datetime
import logging
import nltk
import validators
import streamlit as st
from summarizer import Summarizer
from config import MODELS
from warnings import filterwarnings
filterwarnings("ignore")
from utils import (
clean_text,
fetch_article_text,
preprocess_text_for_abstractive_summarization,
read_text_from_file,
)
from rouge import Rouge
def filer():
# return "logs/log "
today = datetime.datetime.today()
log_filename = f"logs/{today.year}-{today.month:02d}-{today.day:02d}.log"
return log_filename
file_handler = logging.FileHandler(filer())
# file_handler = logging.handlers.TimedRotatingFileHandler(filer(),when="D")
file_handler.setLevel(logging.INFO)
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s %(levelname)s (%(name)s) : %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[file_handler],
force=True,
)
logger = logging.getLogger(__name__)
if "api_key" not in st.session_state:
st.session_state.api_key = " "
@st.cache_resource
def initialize_app():
nltk.download("punkt")
@st.cache_resource
def init_summarizer(model_name,api_key=None):
model_type = "local"
if model_name == "OpenAI":
model_type = "openai"
model_path = MODELS[model_name]
if model_type == "openai":
#validation logic
return Summarizer(model_path,model_type,api_key)
else:
logger.info(f"Model for summarization : {model_path}")
return Summarizer(model_path, model_type)
def load_app():
st.title("Text Summarizer πŸ“")
# st.markdown("Creator: [Atharva Ingle](https://github.com/Gladiator07)")
# st.markdown(
# "Source code: [GitHub Repository](https://github.com/Gladiator07/Text-Summarizer)"
# )
model_name = st.sidebar.selectbox(
"Model Name", options=["Version 0", "Version 1","OpenAI"]
)
if model_name == "OpenAI":
st.sidebar.text_input("Enter a valid OpenAI API Key",key = "api_key" ,type="password")
summarizer_type = st.sidebar.selectbox(
"Summarizer Type for Long Text", options=["Map Reduce", "Refine"]
)
st.markdown(
"Enter a text or a url to get a concise summary of the article while conserving the overall meaning. This app supports text in the following formats:"
)
st.markdown(
"""- Raw text in text box
- URL of article/news to be summarized
- .txt, .pdf, .docx file formats"""
)
st.markdown(
"""This app supports two type of summarization:
1. **Extractive Summarization**: The extractive approach involves picking up the most important phrases and lines from the documents. It then combines all the important lines to create the summary. So, in this case, every line and word of the summary actually belongs to the original document which is summarized.
2. **Abstractive Summarization**: The abstractive approach involves rephrasing the complete document while capturing the complete meaning of the document. This type of summarization provides more human-like summary"""
)
st.markdown("---")
# ---------------------------
# ---------------------------
inp_text = st.text_input("Enter text or a url here")
st.markdown(
"<h3 style='text-align: center; color: green;'>OR</h3>",
unsafe_allow_html=True,
)
uploaded_file = st.file_uploader(
"Upload a .txt, .pdf, .docx file for summarization"
)
is_url = validators.url(inp_text)
if is_url:
# complete text, chunks to summarize (list of sentences for long docs)
logger.info("Text Input Type: URL")
text, cleaned_txt = fetch_article_text(url=inp_text)
elif uploaded_file:
logger.info("Text Input Type: FILE")
cleaned_txt = read_text_from_file(uploaded_file)
cleaned_txt = clean_text(cleaned_txt)
else:
logger.info("Text Input Type: INPUT TEXT")
cleaned_txt = clean_text(inp_text)
# view summarized text (expander)
with st.expander("View input text"):
if is_url:
st.write(cleaned_txt[0])
else:
st.write(cleaned_txt)
summarize = st.button("Summarize")
if is_url:
text_to_summarize = " ".join([txt for txt in cleaned_txt])
else:
text_to_summarize = cleaned_txt
return text_to_summarize, model_name, summarizer_type, summarize
def get_summary(text_to_summarize,model_name, summarizer_type, summarize):
while not summarize:
continue
else:
logger.info(f"Model Name: {model_name}")
logger.info(f"Summarization Type for Long Text: {summarizer_type}")
api_key = st.session_state.api_key
summarizer = init_summarizer(model_name,api_key)
with st.spinner(
text="Creating summary. This might take a few seconds ..."
):
if summarizer_type == "Refine":
summarized_text, time = summarizer.summarize(text_to_summarize,"refine")
return summarized_text, time
else :
summarized_text, time = summarizer.summarize(text_to_summarize,"map_reduce")
return summarized_text, time
def display_output(summarized_text,time):
logger.info(f"SUMMARY: {summarized_text}")
logger.info(f"Summary took {time}s")
st.subheader("Summarized text")
st.info(f"{summarized_text}")
st.info(f"Time: {time}s")
# def summarizer_app():
# # ---------------------------------
# # Main Application
# # ---------------------------------
# st.title("Text Summarizer πŸ“")
# # st.markdown("Creator: [Atharva Ingle](https://github.com/Gladiator07)")
# # st.markdown(
# # "Source code: [GitHub Repository](https://github.com/Gladiator07/Text-Summarizer)"
# # )
# model_name = st.sidebar.selectbox(
# "Model Name", options=["Version 0", "Version 1","OpenAI"]
# )
# if model_name == "OpenAI":
# st.sidebar.text_input("Enter a valid OpenAI API Key",key = "api_key" ,type="password")
# summarizer_type = st.sidebar.selectbox(
# "Summarizer Type for Long Text", options=["Map Reduce", "Refine"]
# )
# st.markdown(
# "Enter a text or a url to get a concise summary of the article while conserving the overall meaning. This app supports text in the following formats:"
# )
# st.markdown(
# """- Raw text in text box
# - URL of article/news to be summarized
# - .txt, .pdf, .docx file formats"""
# )
# st.markdown(
# """This app supports two type of summarization:
# 1. **Extractive Summarization**: The extractive approach involves picking up the most important phrases and lines from the documents. It then combines all the important lines to create the summary. So, in this case, every line and word of the summary actually belongs to the original document which is summarized.
# 2. **Abstractive Summarization**: The abstractive approach involves rephrasing the complete document while capturing the complete meaning of the document. This type of summarization provides more human-like summary"""
# )
# st.markdown("---")
# # ---------------------------
# # SETUP & Constants
# # nltk.download("punkt")
# # abs_tokenizer_name = "facebook/bart-large-cnn"
# # abs_model_name = "facebook/bart-large-cnn"
# # abs_tokenizer = AutoTokenizer.from_pretrained(abs_tokenizer_name)
# # abs_max_length = 90
# # abs_min_length = 30
# # model_name_v0 = "IronOne-AI-Labs/long-t5-tglobal-16k-annual-reports-v0"
# # model_name_v1 = "IronOne-AI-Labs/long-t5-tglobal-16k-annual-reports-v1"
# # ---------------------------
# inp_text = st.text_input("Enter text or a url here")
# st.markdown(
# "<h3 style='text-align: center; color: green;'>OR</h3>",
# unsafe_allow_html=True,
# )
# uploaded_file = st.file_uploader(
# "Upload a .txt, .pdf, .docx file for summarization"
# )
# is_url = validators.url(inp_text)
# if is_url:
# # complete text, chunks to summarize (list of sentences for long docs)
# logger.info("Text Input Type: URL")
# text, cleaned_txt = fetch_article_text(url=inp_text)
# elif uploaded_file:
# logger.info("Text Input Type: FILE")
# cleaned_txt = read_text_from_file(uploaded_file)
# cleaned_txt = clean_text(cleaned_txt)
# else:
# logger.info("Text Input Type: INPUT TEXT")
# cleaned_txt = clean_text(inp_text)
# # view summarized text (expander)
# with st.expander("View input text"):
# if is_url:
# st.write(cleaned_txt[0])
# else:
# st.write(cleaned_txt)
# summarize = st.button("Summarize")
# # called on toggle button [summarize]
# if summarize:
# if is_url:
# text_to_summarize = " ".join([txt for txt in cleaned_txt])
# else:
# text_to_summarize = cleaned_txt
# logger.info(f"Model Name: {model_name}")
# logger.info(f"Summarization Type for Long Text: {summarizer_type}")
# api_key = st.session_state.api_key
# print(api_key)
# summarizer = init_summarizer(model_name,api_key)
# with st.spinner(
# text="Creating summary. This might take a few seconds ..."
# ):
# #ext_model = Summarizer()
# #summarized_text = ext_model(text_to_summarize, num_sentences=5)
# if summarizer_type == "Refine":
# summarized_text, time = summarizer.summarize(text_to_summarize,"refine")
# else :
# summarized_text, time = summarizer.summarize(text_to_summarize,"map_reduce")
# # elif model_name == "Version 1":
# # with st.spinner(
# # text="Creating summary. This might take a few seconds ..."
# # ):
# # if summarizer_type == "Refine":
# # summarized_text, time = summarizer_v1.summarize(text_to_summarize,"refine")
# # else :
# # summarized_text, time = summarizer_v1.summarize(text_to_summarize,"map_reduce")
# # final summarized output
# logger.info(f"SUMMARY: {summarized_text}")
# logger.info(f"Summary took {time}s")
# st.subheader("Summarized text")
# st.info(f"{summarized_text}")
# st.info(f"Time: {time}s")
# # st.subheader("Rogue Scores")
# # rouge_sc = Rouge()
# # ground_truth = cleaned_txt[0] if is_url else cleaned_txt
# # score = rouge_sc.get_scores(summarized_text, ground_truth, avg=True)
# # st.code(score)
if __name__ == "__main__":
initialize_app()
text_to_summarize, model_name, summarizer_type, summarize = load_app()
summarized_text,time = get_summary(text_to_summarize, model_name, summarizer_type, summarize)
display_output(summarized_text,time)