test / app.py
IsmayilMasimov36's picture
Create app.py
4f8c634
raw
history blame
2.21 kB
import streamlit as st
from transformers import T5Tokenizer, T5ForConditionalGeneration
from pathlib import Path
from pdfminer.high_level import extract_text
def main():
st.title("PDF Translation")
st.write("Upload a PDF file and we will translate the text inside to German and French.")
# Upload the pdf
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
if uploaded_file is not None:
# Extract text from pdf
documents = extract_text(uploaded_file)
tokenizer = T5Tokenizer.from_pretrained("t5-small")
model = T5ForConditionalGeneration.from_pretrained("t5-small")
# Define translation prefixes for each language
translation_prefixes = {
"german": "translate English to German: ",
"french": "translate English to French: "
}
# Generate translations for each language for each document
translations = {}
# Buttons to trigger translation
translate_german = st.button("Translate to German")
translate_french = st.button("Translate to French")
for language, prefix in translation_prefixes.items():
document_translations = []
for idx, document in enumerate(documents, 1):
text = prefix + document.text
input_ids = tokenizer(text, return_tensors="pt").input_ids
outputs = model.generate(input_ids=input_ids, max_length=50, num_beams=4, no_repeat_ngram_size=2)
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
document_translations.append(translated_text)
translations[language] = document_translations
# Display the translations based on the button clicked
if translate_german:
display_translations(translations["german"], "German")
if translate_french:
display_translations(translations["french"], "French")
def display_translations(translations, language):
st.write(f"\nLanguage: {language}")
for idx, translation in enumerate(translations, 1):
st.write(f"Page {idx}: {translation}")
if __name__ == "__main__":
main()