File size: 7,563 Bytes
c073aa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b297061
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python
# coding: utf-8

# In[10]:


import pandas as pd
import os
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers.optimization import  Adafactor 
import time
import warnings
import random
warnings.filterwarnings('ignore')

import re

def strip_html(text):
    return re.sub('<[^<]+?>', '', text)


# In[5]:


train_columns = ['round_amount', 'round_date', 'stage', 'investee',
       'investee_description', 'investee_country', 'investee_region',
       'investee_subregion', 'investee_vertical', 'investee_industry',
       'investor_list', 'previous_investors', 'prior_funding']
train = pd.read_csv("train.csv")


# In[6]:


train.publication_timestamp = pd.to_datetime(train.publication_timestamp)


# In[7]:


input_text = train[train_columns].to_dict(orient='records')
train_df = train[['title']].rename(columns={'title':'target_text'})
train_df['input_text'] = input_text
train_df['prefix'] = 'tia'
train_df.input_text = train_df.input_text.astype(str)


# In[8]:


if torch.cuda.is_available():
    dev = torch.device("cuda:0") 
    print("Running on the GPU")
else:
    dev = torch.device("cpu")
    print("Running on the CPU")


# In[ ]:


tokenizer = T5Tokenizer.from_pretrained('google/t5-v1_1-base')
model = T5ForConditionalGeneration.from_pretrained('t5-v1_1-base_tia/', local_files_only=True)
#moving the model to device(GPU/CPU)
model.to(dev)


# In[12]:


vi_table = train[['investee_industry', 'investee_vertical']].drop_duplicates()


# In[13]:


def update_industry(value):
    verticals = list(vi_table[vi_table['investee_industry'] == value]['investee_vertical'].values)
    return verticals[0]

def update_vertical(value):
    industries = list(vi_table[vi_table['investee_vertical'] == value]['investee_industry'].values)
    return industries[0]


# In[ ]:


update_industry('Green')


# In[ ]:


update_vertical('Clean tech')


# In[ ]:


import gradio as gr


# In[ ]:


num_return_sequences = 5


# In[ ]:


def generate_headline(stage, investee_country, investee_subregion, investee_region, 
                      investee_vertical, investee_industry, 
                      round_amount, investee, investee_description, investor_list, previous_investors,
                      other_values):

    full_df = other_values.set_index("key").T
    
    full_df['stage'] = stage
    full_df['investee_country'] = investee_country
    full_df['investee_subregion'] = investee_subregion
    full_df['investee_region'] = investee_region
    full_df['investee_vertical'] = investee_vertical
    full_df['investee_industry'] = investee_industry
    full_df['round_amount'] = str(float(round_amount))
    full_df['investee'] = investee
    full_df['investee_description'] = investee_description
    full_df['investor_list'] = investor_list
    full_df['previous_investors'] = previous_investors
    
    random_set =full_df[['round_amount', 'round_date', 'stage', 'investee',
       'investee_description', 'investee_country', 'investee_region',
       'investee_subregion', 'investee_vertical', 'investee_industry',
       'investor_list', 'previous_investors', 'prior_funding']].to_json(orient="records")
#    print(random_set)
    
    input_ids = tokenizer.encode(f"tia: {{{random_set}}}", return_tensors="pt")  # Batch size 1
    input_ids=input_ids.to(dev)
    outputs = model.generate(input_ids)
    # text_output = tokenizer.decode(outputs[0]) # Single output
    text_outputs = model.generate(inputs=input_ids, do_sample=True, 
                                  num_beams=2, 
                                  num_return_sequences=num_return_sequences,
                                 repetition_penalty=5.0)
    outputs = [strip_html(tokenizer.decode(o)) for o in text_outputs]
    return "\n".join(outputs)


# In[ ]:


other_columns = ['round_date', 'prior_funding']


# In[ ]:


train.sample(1)[other_columns].T.reset_index().values


# In[ ]:


print(train.query("investee == 'NOSH'")['title'].head(1).T)
train.query("investee == 'NOSH'")[train_columns].head(1).T


# In[ ]:


fake_data = {
   "round_amount":1000000.0,
   "round_date":"2018-09-26",
   "stage":"Pre-series A",
   "investee":"NOSH",
   "investee_description":"NOSH makes and delivers ready-to-eat meals in Hong Kong.",
   "investee_country":"Hong Kong",
   "investee_region":"Asia",
   "investee_subregion":"Eastern Asia",
   "investee_vertical":"Food tech",
   "investee_industry":"Restaurants & Food",
   "investor_list":["Alibaba Entrepreneurs Fund (阿里巴巴创业者基金)"],
   "previous_investors":"",
   "prior_funding":1000000.0
}


# In[ ]:


pd.DataFrame([fake_data]).T


# In[ ]:


demo = gr.Blocks()

random_sample = train[train_columns].sample(1)
random_sample = pd.DataFrame([fake_data])

stage = gr.Dropdown(label="stage", choices=list(train[train_columns].stage.unique()))
investee_country = gr.Dropdown(label="investee_country", choices=list(train[train_columns].investee_country.unique()),
                              value=random_sample.investee_country.values[0])
investee_subregion = gr.Dropdown(label="investee_subregion", choices=list(train[train_columns].investee_subregion.unique()),
                              value=random_sample.investee_subregion.values[0])
investee_region = gr.Dropdown(label="investee_region", choices=list(train[train_columns].investee_region.unique()),
                             value=random_sample.investee_region.values[0])
investee_vertical = gr.Dropdown(label="investee_vertical", choices=list(train[train_columns].investee_vertical.unique()),
                            value=random_sample.investee_vertical.values[0])
investee_industry = gr.Dropdown(label="investee_industry", choices=list(train[train_columns].investee_industry.unique()),
                            value=random_sample.investee_industry.values[0])

if pd.isnull(random_sample.round_amount.values[0]):
    rand_amount = 0
else:
    rand_amount = random_sample.round_amount.values[0]

round_amount = gr.Slider(label="round_amount", minimum=100000, maximum=200000000, 
                         value=rand_amount, 
                         step=100000)

investee = gr.Textbox(label="investee", value=random_sample.investee.values[0])
investee_description = gr.Textbox(label="investee_description", 
           value=random_sample.investee_description.values[0])
investor_list = gr.Textbox(label="investor_list", 
           value=random_sample.investor_list.values[0])
previous_investors = gr.Textbox(label="previous_investors", 
           value=random_sample.previous_investors.values[0])  
other_values = gr.Dataframe(
    headers=['key', 'value'],
    value=[['round_date', random_sample.round_date.values[0]],
   ['prior_funding', random_sample.prior_funding.values[0]]]
)
out = gr.Textbox(max_lines=num_return_sequences)

with demo:
    gr.Markdown("Enter funding data to generate news headline.")
   
    inputs=[stage, investee_country, investee_subregion, investee_region, 
                      investee_vertical, investee_industry, 
                      round_amount, investee, investee_description, investor_list, previous_investors,
                      other_values]
    
    investee_industry.change(fn=update_industry, inputs=investee_industry, outputs=investee_vertical)
    investee_vertical.change(fn=update_vertical, inputs=investee_vertical, outputs=investee_industry)
    gr.Interface(fn=generate_headline, inputs=inputs, outputs=out, live=True)
    description="Enter funding data to generate news headline.",
    live=True
    
demo.launch()