Izza-shahzad-13
commited on
Commit
•
08eb120
1
Parent(s):
7625568
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import requests
|
|
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
os.environ["GROQ_API_KEY"] = "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"
|
7 |
|
8 |
# Groq API endpoint
|
@@ -33,14 +36,13 @@ def generate_response(context):
|
|
33 |
return response.json()["text"]
|
34 |
|
35 |
# Load the counseling conversations dataset
|
36 |
-
from datasets import load_dataset
|
37 |
dataset = load_dataset("Amod/mental_health_counseling_conversations")["train"]
|
38 |
|
39 |
# Precompute embeddings for the dataset responses using Groq API
|
40 |
-
@st.
|
41 |
-
def embed_dataset(
|
42 |
embeddings = []
|
43 |
-
for entry in
|
44 |
embedding = retrieve_embedding(entry["response"])
|
45 |
embeddings.append(embedding)
|
46 |
return embeddings
|
@@ -48,9 +50,6 @@ def embed_dataset(dataset):
|
|
48 |
dataset_embeddings = embed_dataset(dataset)
|
49 |
|
50 |
# Function to retrieve closest responses from the dataset using cosine similarity
|
51 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
52 |
-
import numpy as np
|
53 |
-
|
54 |
def retrieve_response(user_query, dataset, dataset_embeddings, k=5):
|
55 |
query_embedding = retrieve_embedding(user_query)
|
56 |
cos_scores = cosine_similarity([query_embedding], dataset_embeddings)[0]
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import requests
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import numpy as np
|
6 |
+
from datasets import load_dataset
|
7 |
|
8 |
+
# Groq API key setup
|
9 |
os.environ["GROQ_API_KEY"] = "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"
|
10 |
|
11 |
# Groq API endpoint
|
|
|
36 |
return response.json()["text"]
|
37 |
|
38 |
# Load the counseling conversations dataset
|
|
|
39 |
dataset = load_dataset("Amod/mental_health_counseling_conversations")["train"]
|
40 |
|
41 |
# Precompute embeddings for the dataset responses using Groq API
|
42 |
+
@st.cache_resource
|
43 |
+
def embed_dataset(_dataset):
|
44 |
embeddings = []
|
45 |
+
for entry in _dataset:
|
46 |
embedding = retrieve_embedding(entry["response"])
|
47 |
embeddings.append(embedding)
|
48 |
return embeddings
|
|
|
50 |
dataset_embeddings = embed_dataset(dataset)
|
51 |
|
52 |
# Function to retrieve closest responses from the dataset using cosine similarity
|
|
|
|
|
|
|
53 |
def retrieve_response(user_query, dataset, dataset_embeddings, k=5):
|
54 |
query_embedding = retrieve_embedding(user_query)
|
55 |
cos_scores = cosine_similarity([query_embedding], dataset_embeddings)[0]
|