Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,24 +12,17 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
|
16 |
-
processor = SpeechT5Processor.from_pretrained(model_id)
|
17 |
|
18 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(
|
19 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
20 |
|
21 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
22 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
23 |
|
24 |
|
25 |
-
# from transformers import VitsModel, VitsTokenizer
|
26 |
-
# model_id = 'Matthijs/mms-tts-nld'
|
27 |
-
# model = VitsModel.from_pretrained(model_id).to(device)
|
28 |
-
# tokenizer = VitsTokenizer.from_pretrained(model_id).to(device)
|
29 |
-
|
30 |
-
|
31 |
def translate(audio):
|
32 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "
|
33 |
return outputs["text"]
|
34 |
|
35 |
|
@@ -48,7 +41,9 @@ def speech_to_speech_translation(audio):
|
|
48 |
|
49 |
title = "Cascaded STST"
|
50 |
description = """
|
51 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
|
|
|
|
52 |
"""
|
53 |
|
54 |
demo = gr.Blocks()
|
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
|
|
16 |
|
17 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def translate(audio):
|
25 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
45 |
+
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
+
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
47 |
"""
|
48 |
|
49 |
demo = gr.Blocks()
|