Spaces:
Runtime error
Runtime error
Create rag_BACKUP.py
Browse files- rag_BACKUP.py +63 -0
rag_BACKUP.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# rag_BACKUP.py
|
2 |
+
# rag.py
|
3 |
+
# https://github.com/vndee/local-rag-example/blob/main/rag.py
|
4 |
+
|
5 |
+
from langchain.vectorstores import Chroma
|
6 |
+
from langchain.chat_models import ChatOllama
|
7 |
+
from langchain.embeddings import FastEmbedEmbeddings
|
8 |
+
from langchain.schema.output_parser import StrOutputParser
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain.schema.runnable import RunnablePassthrough
|
12 |
+
from langchain.prompts import PromptTemplate
|
13 |
+
from langchain.vectorstores.utils import filter_complex_metadata
|
14 |
+
|
15 |
+
|
16 |
+
class ChatPDF:
|
17 |
+
vector_store = None
|
18 |
+
retriever = None
|
19 |
+
chain = None
|
20 |
+
|
21 |
+
def __init__(self):
|
22 |
+
self.model = ChatOllama(model="mistral")
|
23 |
+
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=100)
|
24 |
+
self.prompt = PromptTemplate.from_template(
|
25 |
+
"""
|
26 |
+
<s> [INST] You are an assistant for question-answering tasks. Use the following pieces of retrieved context
|
27 |
+
to answer the question. If you don't know the answer, just say that you don't know. Use three sentences
|
28 |
+
maximum and keep the answer concise. [/INST] </s>
|
29 |
+
[INST] Question: {question}
|
30 |
+
Context: {context}
|
31 |
+
Answer: [/INST]
|
32 |
+
"""
|
33 |
+
)
|
34 |
+
|
35 |
+
def ingest(self, pdf_file_path: str):
|
36 |
+
docs = PyPDFLoader(file_path=pdf_file_path).load()
|
37 |
+
chunks = self.text_splitter.split_documents(docs)
|
38 |
+
chunks = filter_complex_metadata(chunks)
|
39 |
+
|
40 |
+
vector_store = Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
|
41 |
+
self.retriever = vector_store.as_retriever(
|
42 |
+
search_type="similarity_score_threshold",
|
43 |
+
search_kwargs={
|
44 |
+
"k": 3,
|
45 |
+
"score_threshold": 0.5,
|
46 |
+
},
|
47 |
+
)
|
48 |
+
|
49 |
+
self.chain = ({"context": self.retriever, "question": RunnablePassthrough()}
|
50 |
+
| self.prompt
|
51 |
+
| self.model
|
52 |
+
| StrOutputParser())
|
53 |
+
|
54 |
+
def ask(self, query: str):
|
55 |
+
if not self.chain:
|
56 |
+
return "Please, add a PDF document first."
|
57 |
+
|
58 |
+
return self.chain.invoke(query)
|
59 |
+
|
60 |
+
def clear(self):
|
61 |
+
self.vector_store = None
|
62 |
+
self.retriever = None
|
63 |
+
self.chain = None
|