# rag.py # https://github.com/vndee/local-rag-example/blob/main/rag.py # ADAPTED TO USE HF LLM INSTEAD OF OLLAMA self.model = ChatOllama(model="mistral") BY J. BOURS 01-03-2024 # EVERNOTE: # https://www.evernote.com/shard/s313/nl/41973486/282c6fc8-9ed5-a977-9895-1eb23941bb4c?title=REQUIREMENTS%20FOR%20A%20LITERATURE%20BASED%20RESEARCH%20LBR%20SYSTEM%20-%20FUNCTIONAL%20AND%20TECHNICAL%20REQUIREMENTS%20-%20ALEXANDER%20UNZICKER%20-%2026-02-2024 # # mistralai/Mistral-7B-v0.1 · Hugging Face # https://huggingface.co/mistralai/Mistral-7B-v0.1?library=true # # Load model directly # from transformers import AutoTokenizer, AutoModelForCausalLM # # tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") # model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") from langchain.vectorstores import Chroma from langchain.chat_models import ChatOllama from langchain.embeddings import FastEmbedEmbeddings from langchain.schema.output_parser import StrOutputParser from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.schema.runnable import RunnablePassthrough from langchain.prompts import PromptTemplate from langchain.vectorstores.utils import filter_complex_metadata from transformers import AutoTokenizer, AutoModelForCausalLM class ChatPDF: vector_store = None retriever = None chain = None def __init__(self): # self.model = ChatOllama(model="mistral") # ORIGINAL # mistralai/Mistral-7B-v0.1 · Hugging Face # https://huggingface.co/mistralai/Mistral-7B-v0.1?library=true # # Load model directly # from transformers import AutoTokenizer, AutoModelForCausalLM # # tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") # model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") # TE GROOT VOOR DE FREE VERSION VAN HF SPACES (max 16 GB): # tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") # self.model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") # # https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha?library=true # tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-alpha") # self.model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-alpha") # # https://huggingface.co/microsoft/phi-2?library=true # Intended Uses # Given the nature of the training data, the Phi-2 model is best suited for prompts using the # QA format, the chat format, and the code format. # tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True) # model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", trust_remote_code=True) # https://huggingface.co/meta-llama/Llama-2-7b-chat-hf?library=true # # tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") # model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf") # # https://huggingface.co/stabilityai/stablelm-3b-4e1t?library=true tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t") self.model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t") self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=100) self.prompt = PromptTemplate.from_template( """ [INST] You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise. [/INST] [INST] Question: {question} Context: {context} Answer: [/INST] """ ) def ingest(self, pdf_file_path: str): docs = PyPDFLoader(file_path=pdf_file_path).load() chunks = self.text_splitter.split_documents(docs) chunks = filter_complex_metadata(chunks) vector_store = Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings()) self.retriever = vector_store.as_retriever( search_type="similarity_score_threshold", search_kwargs={ "k": 3, "score_threshold": 0.5, }, ) self.chain = ({"context": self.retriever, "question": RunnablePassthrough()} | self.prompt | self.model | StrOutputParser()) def ask(self, query: str): if not self.chain: return "Please, add a PDF document first." return self.chain.invoke(query) def clear(self): self.vector_store = None self.retriever = None self.chain = None