Spaces:
Runtime error
Runtime error
File size: 2,762 Bytes
964d65a f0c497d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
from main import AppModel
import gradio as gr
from gradio.components import Markdown, Textbox, Button
pre_prompt_instruction = """
Chain of Thought: Process the information thoroughly. Understand the user's query in its entirety before formulating a response. Think step-by-step, ensuring a logical flow in the conversation.
Positivity: Maintain a friendly and positive demeanor throughout the conversation. Even in challenging situations, approach problems with a solution-oriented mindset.
Confidentiality: Respect user privacy. Do not ask for or disclose sensitive information. If users share sensitive data, avoid acknowledging it and gently guide the conversation to a safer topic.
Safety First: Prioritize the safety and well-being of users and others. Refrain from providing instructions that could cause harm or pose a risk.
"""
llm_response = ""
history = []
# init app
new_app = AppModel()
def query_llm(input_prompt, new_history):
global history, pre_prompt_instruction, new_app
history = new_history
last_msgs = str(new_app.chat_log[-3:])
embed_result = new_app.get_embedding_docs(last_msgs + " \n\n " + input_prompt)[:new_app.context_limit]
new_query = f"Instruction: {pre_prompt_instruction} \n\n Retrieved Context: {str(embed_result)} \n\n "
new_query += f"Previous User Chat: \n {last_msgs} \n\n User Prompt: \n {input_prompt} \n\n AI Response: \n "
new_response = new_app.get_llm_query(new_query, input_prompt)
return new_response
def feedback_like():
new_app.add_feedback(True)
print("Feedback submitted")
gr.Info("Feedback submitted")
def feedback_dislike():
new_app.add_feedback(False)
print("Feedback submitted")
gr.Info("Feedback submitted")
with gr.Blocks(title="ChatBot", analytics_enabled=False) as chatbot:
gr.Markdown("# ChatBot")
gr.Markdown("Welcome to ChatBot!")
with gr.Row():
with gr.Column(scale=1):
gr.ChatInterface(query_llm, examples=[
"What is today's date?",
"Explain the limitations of natural language processing in current AI systems.",
"Compose a poem about the beauty of nature.",
"Write a Python function to calculate the factorial of a number.",
"How would you solve the traveling salesman problem using a heuristic algorithm?"], analytics_enabled=False)
with gr.Row():
with gr.Column(scale=1):
feedback_btn_like = gr.Button(value="Like & Save")
with gr.Column(scale=1):
feedback_btn_dislike = gr.Button(value="Dislike & Discard")
feedback_btn_like.click(fn=feedback_like)
feedback_btn_dislike.click(fn=feedback_dislike)
chatbot.queue().launch(show_api=True, share=True)
|