Spaces:
Runtime error
Runtime error
Fixed n_searched_images=1 case
Browse files
app.py
CHANGED
@@ -23,10 +23,12 @@ def text_2_image(model, img_emb, img_names, img_urls, n_top_k_images):
|
|
23 |
if st.button("Convert"):
|
24 |
st.write("The image with the most similar embedding is:")
|
25 |
cosine_sim = get_match(model, text, img_emb)
|
26 |
-
|
27 |
-
top_k_images_indices
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
cols = st.columns(n_top_k_images)
|
31 |
for i, image_found in enumerate(images_found):
|
32 |
logger.success(f"Image match found: {image_found}")
|
@@ -51,11 +53,12 @@ def image_2_image(model, img_emb, img_names, img_urls,n_top_k_images):
|
|
51 |
if st.button("Convert"):
|
52 |
st.write("The image with the most similar embedding is:")
|
53 |
cosine_sim = get_match(model, image.convert("RGB"), img_emb)
|
54 |
-
|
55 |
-
top_k_images_indices
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
cols = st.columns(n_top_k_images)
|
60 |
for i, image_found in enumerate(images_found):
|
61 |
logger.success(f"Image match found: {image_found}")
|
|
|
23 |
if st.button("Convert"):
|
24 |
st.write("The image with the most similar embedding is:")
|
25 |
cosine_sim = get_match(model, text, img_emb)
|
26 |
+
top_k_images_indices = torch.topk(cosine_sim, n_top_k_images, 1).indices.squeeze()
|
27 |
+
if top_k_images_indices.nelement() == 1:
|
28 |
+
top_k_images_indices = [top_k_images_indices.tolist()]
|
29 |
+
else:
|
30 |
+
top_k_images_indices = top_k_images_indices.tolist()
|
31 |
+
images_found = [img_names[top_k_best_image] for top_k_best_image in top_k_images_indices]
|
32 |
cols = st.columns(n_top_k_images)
|
33 |
for i, image_found in enumerate(images_found):
|
34 |
logger.success(f"Image match found: {image_found}")
|
|
|
53 |
if st.button("Convert"):
|
54 |
st.write("The image with the most similar embedding is:")
|
55 |
cosine_sim = get_match(model, image.convert("RGB"), img_emb)
|
56 |
+
top_k_images_indices = torch.topk(cosine_sim, n_top_k_images, 1).indices.squeeze()
|
57 |
+
if top_k_images_indices.nelement() == 1:
|
58 |
+
top_k_images_indices = [top_k_images_indices.tolist()]
|
59 |
+
else:
|
60 |
+
top_k_images_indices = top_k_images_indices.tolist()
|
61 |
+
images_found = [img_names[top_k_best_image] for top_k_best_image in top_k_images_indices]
|
62 |
cols = st.columns(n_top_k_images)
|
63 |
for i, image_found in enumerate(images_found):
|
64 |
logger.success(f"Image match found: {image_found}")
|