File size: 6,782 Bytes
1a2253c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from typing import Tuple, List
import torch
from torch import nn, LongTensor, FloatTensor, BoolTensor
from .dalle_bart_encoder import GLU, AttentionBase

IMAGE_TOKEN_COUNT = 256


class DecoderCrossAttention(AttentionBase):
    def forward(
        self,
        decoder_state: FloatTensor,
        encoder_state: FloatTensor,
        attention_mask: BoolTensor
    ) -> FloatTensor:
        keys = self.k_proj.forward(encoder_state)
        values = self.v_proj.forward(encoder_state)
        queries = self.q_proj.forward(decoder_state)
        return super().forward(keys, values, queries, attention_mask)


class DecoderSelfAttention(AttentionBase):
    def __init__(self, head_count: int, embed_count: int):
        super().__init__(head_count, embed_count)


    def forward(
        self, 
        decoder_state: FloatTensor,
        attention_state: FloatTensor,
        attn_mask: BoolTensor,
        token_index: LongTensor
    ) -> Tuple[FloatTensor, FloatTensor]:
        keys = self.k_proj.forward(decoder_state)
        values = self.v_proj.forward(decoder_state)
        queries = self.q_proj.forward(decoder_state)
        attn_state_new = torch.cat([keys, values]).to(attention_state.dtype)
        attention_state[:, token_index] = attn_state_new
        batch_count = decoder_state.shape[0]
        keys = attention_state[:batch_count]
        values = attention_state[batch_count:]
        decoder_state = super().forward(keys, values, queries, attn_mask)
        return decoder_state, attention_state


class DecoderLayer(nn.Module):
    def __init__(
        self, 
        head_count: int, 
        embed_count: int,
        glu_embed_count: int,
        device: str
    ):
        super().__init__()
        self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
        self.self_attn = DecoderSelfAttention(head_count, embed_count)
        self.self_attn_layer_norm = nn.LayerNorm(embed_count)
        self.pre_encoder_attn_layer_norm = nn.LayerNorm(embed_count)
        self.encoder_attn = DecoderCrossAttention(head_count, embed_count)
        self.encoder_attn_layer_norm = nn.LayerNorm(embed_count)
        self.glu = GLU(embed_count, glu_embed_count)
        self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device)


    def forward(
        self,
        decoder_state: FloatTensor,
        encoder_state: FloatTensor,
        attention_state: FloatTensor,
        attention_mask: BoolTensor,
        token_index: LongTensor
    ) -> Tuple[FloatTensor, FloatTensor]:
        # Self Attention
        self_attn_mask = self.token_indices < token_index + 1
        self_attn_mask = self_attn_mask[None][[0] * decoder_state.shape[0]]
        residual = decoder_state
        decoder_state = self.pre_self_attn_layer_norm.forward(decoder_state)
        decoder_state, attention_state = self.self_attn.forward(
            decoder_state=decoder_state,
            attention_state=attention_state,
            attn_mask=self_attn_mask,
            token_index=token_index
        )
        decoder_state = self.self_attn_layer_norm.forward(decoder_state)
        decoder_state = residual + decoder_state

        # Cross Attention
        residual = decoder_state
        decoder_state = self.pre_encoder_attn_layer_norm.forward(decoder_state)
        decoder_state = self.encoder_attn.forward(
            decoder_state=decoder_state,
            encoder_state=encoder_state,
            attention_mask=attention_mask
        )
        decoder_state = self.encoder_attn_layer_norm.forward(decoder_state)
        decoder_state = residual + decoder_state

        # Feed forward
        residual = decoder_state
        decoder_state = self.glu.forward(decoder_state)
        decoder_state = residual + decoder_state

        return decoder_state, attention_state


class DalleBartDecoder(nn.Module):
    def __init__(
        self,
        image_vocab_count: int,
        embed_count: int,
        attention_head_count: int,
        glu_embed_count: int,
        layer_count: int,
        device: str
    ):
        super().__init__()
        self.layer_count = layer_count
        self.embed_count = embed_count
        self.image_vocab_count = image_vocab_count
        self.embed_tokens = nn.Embedding(image_vocab_count + 1, embed_count)
        self.embed_positions = nn.Embedding(IMAGE_TOKEN_COUNT, embed_count)
        self.layers: List[DecoderLayer] = nn.ModuleList([
            DecoderLayer(
                head_count=attention_head_count,
                embed_count=embed_count,
                glu_embed_count=glu_embed_count,
                device=device
            ) 
            for _ in range(layer_count)
        ])
        self.layernorm_embedding = nn.LayerNorm(embed_count)
        self.final_ln = nn.LayerNorm(embed_count)
        self.lm_head = nn.Linear(embed_count, image_vocab_count + 1, bias=False)
        self.token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=device)


    def forward(
        self,
        settings: FloatTensor,
        attention_mask: BoolTensor,
        encoder_state: FloatTensor,
        attention_state: FloatTensor,
        prev_tokens: LongTensor,
        token_index: LongTensor
    ) -> Tuple[LongTensor, FloatTensor]:
        image_count = encoder_state.shape[0] // 2
        token_index_batched = token_index[[0] * image_count * 2]
        prev_tokens = prev_tokens[list(range(image_count)) * 2]
        prev_tokens.clamp_(0, self.image_vocab_count)
        decoder_state = self.embed_tokens.forward(prev_tokens)
        decoder_state += self.embed_positions.forward(token_index_batched)
        decoder_state = self.layernorm_embedding.forward(decoder_state)
        decoder_state = decoder_state[:, None]
        for i in range(self.layer_count):
            decoder_state, attention_state[i] = self.layers[i].forward(
                decoder_state,
                encoder_state,
                attention_state[i],
                attention_mask,
                token_index
            )
        decoder_state = self.final_ln(decoder_state)
        logits = self.lm_head(decoder_state)
        temperature = settings[[0]]
        top_k = settings[[1]].to(torch.long)
        supercondition_factor = settings[[2]]
        logits = logits[:, -1, : 2 ** 14]
        logits: FloatTensor = (
            logits[:image_count] * (1 - supercondition_factor) + 
            logits[image_count:] * supercondition_factor
        )
        logits_sorted, _ = logits.sort(descending=True)
        is_kept = logits >= logits_sorted[:, top_k - 1]
        logits -= logits_sorted[:, [0]]
        logits /= temperature
        logits.exp_()
        logits *= is_kept.to(torch.float32)
        image_tokens = torch.multinomial(logits, 1)[:, 0]
        return image_tokens, attention_state