Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
from torch import FloatTensor, LongTensor | |
from math import sqrt | |
class ResnetBlock(nn.Module): | |
def __init__(self, log2_count_in: int, log2_count_out: int): | |
super().__init__() | |
m, n = 2 ** log2_count_in, 2 ** log2_count_out | |
self.is_middle = m == n | |
self.norm1 = nn.GroupNorm(2 ** 5, m) | |
self.conv1 = nn.Conv2d(m, n, 3, padding=1) | |
self.norm2 = nn.GroupNorm(2 ** 5, n) | |
self.conv2 = nn.Conv2d(n, n, 3, padding=1) | |
if not self.is_middle: | |
self.nin_shortcut = nn.Conv2d(m, n, 1) | |
def forward(self, x: FloatTensor) -> FloatTensor: | |
h = x | |
h = self.norm1.forward(h) | |
h *= torch.sigmoid(h) | |
h = self.conv1.forward(h) | |
h = self.norm2.forward(h) | |
h *= torch.sigmoid(h) | |
h = self.conv2(h) | |
if not self.is_middle: | |
x = self.nin_shortcut.forward(x) | |
return x + h | |
class AttentionBlock(nn.Module): | |
def __init__(self): | |
super().__init__() | |
n = 2 ** 9 | |
self.norm = nn.GroupNorm(2 ** 5, n) | |
self.q = nn.Conv2d(n, n, 1) | |
self.k = nn.Conv2d(n, n, 1) | |
self.v = nn.Conv2d(n, n, 1) | |
self.proj_out = nn.Conv2d(n, n, 1) | |
def forward(self, x: FloatTensor) -> FloatTensor: | |
n, m = 2 ** 9, x.shape[0] | |
h = x | |
h = self.norm(h) | |
k = self.k.forward(h) | |
v = self.v.forward(h) | |
q = self.q.forward(h) | |
k = k.reshape(m, n, -1) | |
v = v.reshape(m, n, -1) | |
q = q.reshape(m, n, -1) | |
q = q.permute(0, 2, 1) | |
w = torch.bmm(q, k) | |
w /= n ** 0.5 | |
w = torch.softmax(w, dim=2) | |
w = w.permute(0, 2, 1) | |
h = torch.bmm(v, w) | |
token_count = int(sqrt(h.shape[-1])) | |
h = h.reshape(m, n, token_count, token_count) | |
h = self.proj_out.forward(h) | |
return x + h | |
class MiddleLayer(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.block_1 = ResnetBlock(9, 9) | |
self.attn_1 = AttentionBlock() | |
self.block_2 = ResnetBlock(9, 9) | |
def forward(self, h: FloatTensor) -> FloatTensor: | |
h = self.block_1.forward(h) | |
h = self.attn_1.forward(h) | |
h = self.block_2.forward(h) | |
return h | |
class Upsample(nn.Module): | |
def __init__(self, log2_count): | |
super().__init__() | |
n = 2 ** log2_count | |
self.upsample = torch.nn.UpsamplingNearest2d(scale_factor=2) | |
self.conv = nn.Conv2d(n, n, 3, padding=1) | |
def forward(self, x: FloatTensor) -> FloatTensor: | |
x = self.upsample.forward(x.to(torch.float32)) | |
x = self.conv.forward(x) | |
return x | |
class UpsampleBlock(nn.Module): | |
def __init__( | |
self, | |
log2_count_in: int, | |
log2_count_out: int, | |
has_attention: bool, | |
has_upsample: bool | |
): | |
super().__init__() | |
self.has_attention = has_attention | |
self.has_upsample = has_upsample | |
self.block = nn.ModuleList([ | |
ResnetBlock(log2_count_in, log2_count_out), | |
ResnetBlock(log2_count_out, log2_count_out), | |
ResnetBlock(log2_count_out, log2_count_out) | |
]) | |
if has_attention: | |
self.attn = nn.ModuleList([ | |
AttentionBlock(), | |
AttentionBlock(), | |
AttentionBlock() | |
]) | |
if has_upsample: | |
self.upsample = Upsample(log2_count_out) | |
def forward(self, h: FloatTensor) -> FloatTensor: | |
for j in range(3): | |
h = self.block[j].forward(h) | |
if self.has_attention: | |
h = self.attn[j].forward(h) | |
if self.has_upsample: | |
h = self.upsample.forward(h) | |
return h | |
class Decoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.conv_in = nn.Conv2d(2 ** 8, 2 ** 9, 3, padding=1) | |
self.mid = MiddleLayer() | |
self.up = nn.ModuleList([ | |
UpsampleBlock(7, 7, False, False), | |
UpsampleBlock(8, 7, False, True), | |
UpsampleBlock(8, 8, False, True), | |
UpsampleBlock(9, 8, False, True), | |
UpsampleBlock(9, 9, True, True) | |
]) | |
self.norm_out = nn.GroupNorm(2 ** 5, 2 ** 7) | |
self.conv_out = nn.Conv2d(2 ** 7, 3, 3, padding=1) | |
def forward(self, z: FloatTensor) -> FloatTensor: | |
z = self.conv_in.forward(z) | |
z = self.mid.forward(z) | |
for i in reversed(range(5)): | |
z = self.up[i].forward(z) | |
z = self.norm_out.forward(z) | |
z *= torch.sigmoid(z) | |
z = self.conv_out.forward(z) | |
return z | |
class VQGanDetokenizer(nn.Module): | |
def __init__(self): | |
super().__init__() | |
vocab_count, embed_count = 2 ** 14, 2 ** 8 | |
self.vocab_count = vocab_count | |
self.embedding = nn.Embedding(vocab_count, embed_count) | |
self.post_quant_conv = nn.Conv2d(embed_count, embed_count, 1) | |
self.decoder = Decoder() | |
def forward(self, is_seamless: bool, z: LongTensor) -> FloatTensor: | |
z.clamp_(0, self.vocab_count - 1) | |
grid_size = int(sqrt(z.shape[0])) | |
token_count = grid_size * 2 ** 4 | |
if is_seamless: | |
z = z.view([grid_size, grid_size, 2 ** 4, 2 ** 4]) | |
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2) | |
z = z.flatten().unsqueeze(1) | |
z = self.embedding.forward(z) | |
z = z.view((1, token_count, token_count, 2 ** 8)) | |
else: | |
z = self.embedding.forward(z) | |
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8)) | |
z = z.permute(0, 3, 1, 2).contiguous() | |
z = self.post_quant_conv.forward(z) | |
z = self.decoder.forward(z) | |
z = z.permute(0, 2, 3, 1) | |
z = z.clip(0.0, 1.0) * 255 | |
if is_seamless: | |
z = z[0] | |
else: | |
z = z.view([grid_size, grid_size, 2 ** 8, 2 ** 8, 3]) | |
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2) | |
return z | |