Spaces:
Runtime error
Runtime error
import os | |
from PIL import Image | |
import numpy | |
from torch import LongTensor, FloatTensor | |
import torch | |
import torch.backends.cudnn, torch.backends.cuda | |
import json | |
import requests | |
from typing import Iterator | |
from .text_tokenizer import TextTokenizer | |
from .models import DalleBartEncoder, DalleBartDecoder, VQGanDetokenizer | |
import streamlit as st | |
torch.set_grad_enabled(False) | |
torch.set_num_threads(os.cpu_count()) | |
torch.backends.cudnn.enabled = True | |
torch.backends.cudnn.allow_tf32 = True | |
MIN_DALLE_REPO = 'https://huggingface.co/kuprel/min-dalle/resolve/main/' | |
IMAGE_TOKEN_COUNT = 256 | |
class MinDalle: | |
def __init__( | |
self, | |
models_root: str = 'pretrained', | |
dtype: torch.dtype = torch.float32, | |
device: str = None, | |
is_mega: bool = True, | |
is_reusable: bool = True, | |
is_verbose = True | |
): | |
if device == None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
if is_verbose: print("using device", device) | |
self.device = device | |
self.is_mega = is_mega | |
self.is_reusable = is_reusable | |
self.dtype = dtype | |
self.is_verbose = is_verbose | |
self.text_token_count = 64 | |
#Changed | |
self.layer_count = 24 if is_mega else 6 | |
self.attention_head_count = 32 if is_mega else 8 | |
self.embed_count = 2048 if is_mega else 512 | |
self.glu_embed_count = 4096 if is_mega else 2730 | |
self.text_vocab_count = 50272 if is_mega else 50264 | |
self.image_vocab_count = 16415 if is_mega else 16384 | |
model_name = 'dalle_bart_{}'.format('mega' if is_mega else 'mini') | |
dalle_path = os.path.join(models_root, model_name) | |
vqgan_path = os.path.join(models_root, 'vqgan') | |
if not os.path.exists(dalle_path): os.makedirs(dalle_path) | |
if not os.path.exists(vqgan_path): os.makedirs(vqgan_path) | |
self.vocab_path = os.path.join(dalle_path, 'vocab.json') | |
self.merges_path = os.path.join(dalle_path, 'merges.txt') | |
self.encoder_params_path = os.path.join(dalle_path, 'encoder.pt') | |
self.decoder_params_path = os.path.join(dalle_path, 'decoder.pt') | |
self.detoker_params_path = os.path.join(vqgan_path, 'detoker.pt') | |
self.init_tokenizer() | |
if is_reusable: | |
self.init_encoder() | |
self.init_decoder() | |
self.init_detokenizer() | |
def download_tokenizer(self): | |
if self.is_verbose: print("downloading tokenizer params") | |
suffix = '' if self.is_mega else '_mini' | |
_ = requests.get(MIN_DALLE_REPO + 'config.json') # trigger HF download | |
vocab = requests.get(MIN_DALLE_REPO + 'vocab{}.json'.format(suffix)) | |
merges = requests.get(MIN_DALLE_REPO + 'merges{}.txt'.format(suffix)) | |
with open(self.vocab_path, 'wb') as f: f.write(vocab.content) | |
with open(self.merges_path, 'wb') as f: f.write(merges.content) | |
def download_encoder(self): | |
if self.is_verbose: print("downloading encoder params") | |
suffix = '' if self.is_mega else '_mini' | |
params = requests.get(MIN_DALLE_REPO + 'encoder{}.pt'.format(suffix)) | |
with open(self.encoder_params_path, 'wb') as f: f.write(params.content) | |
def download_decoder(self): | |
if self.is_verbose: print("downloading decoder params") | |
suffix = '' if self.is_mega else '_mini' | |
params = requests.get(MIN_DALLE_REPO + 'decoder{}.pt'.format(suffix)) | |
with open(self.decoder_params_path, 'wb') as f: f.write(params.content) | |
def download_detokenizer(self): | |
if self.is_verbose: print("downloading detokenizer params") | |
params = requests.get(MIN_DALLE_REPO + 'detoker.pt') | |
with open(self.detoker_params_path, 'wb') as f: f.write(params.content) | |
def init_tokenizer(self): | |
is_downloaded = os.path.exists(self.vocab_path) | |
is_downloaded &= os.path.exists(self.merges_path) | |
if not is_downloaded: self.download_tokenizer() | |
if self.is_verbose: print("intializing TextTokenizer") | |
with open(self.vocab_path, 'r', encoding='utf8') as f: | |
vocab = json.load(f) | |
with open(self.merges_path, 'r', encoding='utf8') as f: | |
merges = f.read().split("\n")[1:-1] | |
self.tokenizer = TextTokenizer(vocab, merges) | |
def init_encoder(self): | |
is_downloaded = os.path.exists(self.encoder_params_path) | |
if not is_downloaded: self.download_encoder() | |
if self.is_verbose: print("initializing DalleBartEncoder") | |
self.encoder = DalleBartEncoder( | |
attention_head_count = self.attention_head_count, | |
embed_count = self.embed_count, | |
glu_embed_count = self.glu_embed_count, | |
text_token_count = self.text_token_count, | |
text_vocab_count = self.text_vocab_count, | |
layer_count = self.layer_count, | |
device=self.device | |
).to(self.dtype).eval() | |
params = torch.load(self.encoder_params_path) | |
self.encoder.load_state_dict(params, strict=False) | |
del params | |
self.encoder = self.encoder.to(device=self.device) | |
def init_decoder(self): | |
is_downloaded = os.path.exists(self.decoder_params_path) | |
if not is_downloaded: self.download_decoder() | |
if self.is_verbose: print("initializing DalleBartDecoder") | |
self.decoder = DalleBartDecoder( | |
image_vocab_count = self.image_vocab_count, | |
attention_head_count = self.attention_head_count, | |
embed_count = self.embed_count, | |
glu_embed_count = self.glu_embed_count, | |
layer_count = self.layer_count, | |
device=self.device | |
).to(self.dtype).eval() | |
params = torch.load(self.decoder_params_path) | |
self.decoder.load_state_dict(params, strict=False) | |
del params | |
self.decoder = self.decoder.to(device=self.device) | |
def init_detokenizer(self): | |
is_downloaded = os.path.exists(self.detoker_params_path) | |
if not is_downloaded: self.download_detokenizer() | |
if self.is_verbose: print("initializing VQGanDetokenizer") | |
self.detokenizer = VQGanDetokenizer().eval() | |
params = torch.load(self.detoker_params_path) | |
self.detokenizer.load_state_dict(params) | |
del params | |
self.detokenizer = self.detokenizer.to(device=self.device) | |
def image_grid_from_tokens( | |
self, | |
image_tokens: LongTensor, | |
is_seamless: bool, | |
is_verbose: bool = False | |
) -> FloatTensor: | |
if not self.is_reusable: del self.decoder | |
torch.cuda.empty_cache() | |
if not self.is_reusable: self.init_detokenizer() | |
if is_verbose: print("detokenizing image") | |
images = self.detokenizer.forward(is_seamless, image_tokens) | |
if not self.is_reusable: del self.detokenizer | |
return images | |
def generate_raw_image_stream( | |
self, | |
text: str, | |
seed: int, | |
grid_size: int, | |
progressive_outputs: bool = False, | |
is_seamless: bool = False, | |
temperature: float = 1, | |
top_k: int = 256, | |
supercondition_factor: int = 16, | |
is_verbose: bool = False | |
) -> Iterator[FloatTensor]: | |
image_count = grid_size ** 2 | |
if is_verbose: print("tokenizing text") | |
tokens = self.tokenizer.tokenize(text, is_verbose=is_verbose) | |
if len(tokens) > self.text_token_count: | |
tokens = tokens[:self.text_token_count] | |
if is_verbose: print("{} text tokens".format(len(tokens)), tokens) | |
text_tokens = numpy.ones((2, 64), dtype=numpy.int32) | |
text_tokens[0, :2] = [tokens[0], tokens[-1]] | |
text_tokens[1, :len(tokens)] = tokens | |
text_tokens = torch.tensor( | |
text_tokens, | |
dtype=torch.long, | |
device=self.device | |
) | |
if not self.is_reusable: self.init_encoder() | |
if is_verbose: print("encoding text tokens") | |
with torch.cuda.amp.autocast(dtype=self.dtype): | |
encoder_state = self.encoder.forward(text_tokens) | |
if not self.is_reusable: del self.encoder | |
torch.cuda.empty_cache() | |
if not self.is_reusable: self.init_decoder() | |
with torch.cuda.amp.autocast(dtype=self.dtype): | |
expanded_indices = [0] * image_count + [1] * image_count | |
text_tokens = text_tokens[expanded_indices] | |
encoder_state = encoder_state[expanded_indices] | |
attention_mask = text_tokens.not_equal(1) | |
attention_state = torch.zeros( | |
size=( | |
self.layer_count, | |
image_count * 4, | |
IMAGE_TOKEN_COUNT, | |
self.embed_count | |
), | |
device=self.device | |
) | |
image_tokens = torch.full( | |
(IMAGE_TOKEN_COUNT + 1, image_count), | |
self.image_vocab_count, | |
dtype=torch.long, | |
device=self.device | |
) | |
if seed > 0: torch.manual_seed(seed) | |
token_indices = torch.arange(IMAGE_TOKEN_COUNT, device=self.device) | |
settings = torch.tensor( | |
[temperature, top_k, supercondition_factor], | |
dtype=torch.float32, | |
device=self.device | |
) | |
for i in range(IMAGE_TOKEN_COUNT): | |
if(st.session_state.page != 0): | |
break | |
st.session_state.bar.progress(i/IMAGE_TOKEN_COUNT) | |
#torch.cuda.empty_cache() | |
#torch.cpu.empty_cache() | |
#with torch.cuda.amp.autocast(dtype=self.dtype): | |
image_tokens[i + 1], attention_state = self.decoder.forward( | |
settings=settings, | |
attention_mask=attention_mask, | |
encoder_state=encoder_state, | |
attention_state=attention_state, | |
prev_tokens=image_tokens[i], | |
token_index=token_indices[[i]] | |
) | |
# with torch.cuda.amp.autocast(dtype=torch.float32): | |
if ((i + 1) % 32 == 0 and progressive_outputs) or i + 1 == 256: | |
yield self.image_grid_from_tokens( | |
image_tokens=image_tokens[1:].T, | |
is_seamless=is_seamless, | |
is_verbose=is_verbose | |
) | |
def generate_image_stream(self, *args, **kwargs) -> Iterator[Image.Image]: | |
image_stream = self.generate_raw_image_stream(*args, **kwargs) | |
for image in image_stream: | |
image = image.to(torch.uint8).to('cpu').numpy() | |
yield Image.fromarray(image) | |
def generate_images_stream(self, *args, **kwargs) -> Iterator[FloatTensor]: | |
image_stream = self.generate_raw_image_stream(*args, **kwargs) | |
for image in image_stream: | |
grid_size = kwargs['grid_size'] | |
image = image.view([grid_size * 256, grid_size, 256, 3]) | |
image = image.transpose(1, 0) | |
image = image.reshape([grid_size ** 2, 2 ** 8, 2 ** 8, 3]) | |
yield image | |
def generate_image(self, *args, **kwargs) -> Image.Image: | |
image_stream = self.generate_image_stream( | |
*args, **kwargs, | |
progressive_outputs=False | |
) | |
return next(image_stream) | |
def generate_images(self, *args, **kwargs) -> Image.Image: | |
images_stream = self.generate_images_stream( | |
*args, **kwargs, | |
progressive_outputs=False | |
) | |
return next(images_stream) |