Spaces:
Runtime error
Runtime error
Upload dalle_bart_encoder.py
Browse files
min_dalle/models/dalle_bart_encoder.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
import torch
|
3 |
+
from torch import nn, BoolTensor, FloatTensor, LongTensor
|
4 |
+
|
5 |
+
|
6 |
+
class GLU(nn.Module):
|
7 |
+
def __init__(self, count_in_out: int, count_middle: int):
|
8 |
+
super().__init__()
|
9 |
+
self.gelu = nn.GELU()
|
10 |
+
self.ln0 = nn.LayerNorm(count_in_out)
|
11 |
+
self.ln1 = nn.LayerNorm(count_middle)
|
12 |
+
self.fc0 = nn.Linear(count_in_out, count_middle, bias=False)
|
13 |
+
self.fc1 = nn.Linear(count_in_out, count_middle, bias=False)
|
14 |
+
self.fc2 = nn.Linear(count_middle, count_in_out, bias=False)
|
15 |
+
|
16 |
+
def forward(self, z: FloatTensor) -> FloatTensor:
|
17 |
+
z = self.ln0.forward(z)
|
18 |
+
w = self.fc0.forward(z)
|
19 |
+
w = self.gelu.forward(w)
|
20 |
+
v = self.fc1.forward(z)
|
21 |
+
z = self.ln1.forward(w * v)
|
22 |
+
z = self.fc2.forward(z)
|
23 |
+
return z
|
24 |
+
|
25 |
+
|
26 |
+
class AttentionBase(nn.Module):
|
27 |
+
def __init__(self, head_count: int, embed_count: int):
|
28 |
+
super().__init__()
|
29 |
+
self.head_count = head_count
|
30 |
+
self.embed_count = embed_count
|
31 |
+
|
32 |
+
self.k_proj = nn.Linear(embed_count, embed_count, bias=False)
|
33 |
+
self.v_proj = nn.Linear(embed_count, embed_count, bias=False)
|
34 |
+
self.q_proj = nn.Linear(embed_count, embed_count, bias=False)
|
35 |
+
self.out_proj = nn.Linear(embed_count, embed_count, bias=False)
|
36 |
+
|
37 |
+
def forward(
|
38 |
+
self,
|
39 |
+
keys: FloatTensor,
|
40 |
+
values: FloatTensor,
|
41 |
+
queries: FloatTensor,
|
42 |
+
attention_mask: BoolTensor
|
43 |
+
) -> FloatTensor:
|
44 |
+
keys = keys.reshape(keys.shape[:2] + (self.head_count, -1))
|
45 |
+
values = values.reshape(values.shape[:2] + (self.head_count, -1))
|
46 |
+
queries = queries.reshape(queries.shape[:2] + (self.head_count, -1))
|
47 |
+
queries /= queries.shape[-1] ** 0.5
|
48 |
+
|
49 |
+
attention_bias = (1 - attention_mask.to(torch.float32)) * -1e12
|
50 |
+
attention_weights: FloatTensor = torch.einsum(
|
51 |
+
'bqhc,bkhc->bhqk',
|
52 |
+
queries,
|
53 |
+
keys
|
54 |
+
)
|
55 |
+
attention_weights += attention_bias[:, None, None, :]
|
56 |
+
attention_weights = torch.softmax(attention_weights, -1)
|
57 |
+
attention_output: FloatTensor = torch.einsum(
|
58 |
+
"bhqk,bkhc->bqhc",
|
59 |
+
attention_weights,
|
60 |
+
values
|
61 |
+
)
|
62 |
+
shape = attention_output.shape[:2] + (self.embed_count,)
|
63 |
+
attention_output = attention_output.reshape(shape)
|
64 |
+
attention_output = self.out_proj.forward(attention_output)
|
65 |
+
return attention_output
|
66 |
+
|
67 |
+
|
68 |
+
class EncoderSelfAttention(AttentionBase):
|
69 |
+
def forward(
|
70 |
+
self,
|
71 |
+
encoder_state: FloatTensor,
|
72 |
+
attention_mask: BoolTensor
|
73 |
+
) -> FloatTensor:
|
74 |
+
keys = self.k_proj.forward(encoder_state)
|
75 |
+
values = self.v_proj.forward(encoder_state)
|
76 |
+
queries = self.q_proj.forward(encoder_state)
|
77 |
+
return super().forward(keys, values, queries, attention_mask)
|
78 |
+
|
79 |
+
|
80 |
+
class EncoderLayer(nn.Module):
|
81 |
+
def __init__(self, embed_count: int, head_count: int, glu_embed_count: int):
|
82 |
+
super().__init__()
|
83 |
+
self.pre_self_attn_layer_norm = nn.LayerNorm(embed_count)
|
84 |
+
self.self_attn = EncoderSelfAttention(head_count, embed_count)
|
85 |
+
self.self_attn_layer_norm = nn.LayerNorm(embed_count)
|
86 |
+
self.glu = GLU(embed_count, glu_embed_count)
|
87 |
+
|
88 |
+
def forward(
|
89 |
+
self,
|
90 |
+
encoder_state: FloatTensor,
|
91 |
+
attention_mask: BoolTensor
|
92 |
+
) -> FloatTensor:
|
93 |
+
residual = encoder_state
|
94 |
+
encoder_state = self.pre_self_attn_layer_norm.forward(encoder_state)
|
95 |
+
encoder_state = self.self_attn.forward(encoder_state, attention_mask)
|
96 |
+
encoder_state = self.self_attn_layer_norm.forward(encoder_state)
|
97 |
+
encoder_state = residual + encoder_state
|
98 |
+
residual = encoder_state
|
99 |
+
encoder_state = self.glu.forward(encoder_state)
|
100 |
+
encoder_state = residual + encoder_state
|
101 |
+
return encoder_state
|
102 |
+
|
103 |
+
|
104 |
+
class DalleBartEncoder(nn.Module):
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
layer_count: int,
|
108 |
+
embed_count: int,
|
109 |
+
attention_head_count: int,
|
110 |
+
text_vocab_count: int,
|
111 |
+
text_token_count: int,
|
112 |
+
glu_embed_count: int,
|
113 |
+
device: str
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
self.text_vocab_count = text_vocab_count
|
117 |
+
self.embed_tokens = nn.Embedding(text_vocab_count, embed_count)
|
118 |
+
self.embed_positions = nn.Embedding(text_token_count, embed_count)
|
119 |
+
self.layers: List[EncoderLayer] = nn.ModuleList([
|
120 |
+
EncoderLayer(
|
121 |
+
embed_count = embed_count,
|
122 |
+
head_count = attention_head_count,
|
123 |
+
glu_embed_count = glu_embed_count
|
124 |
+
)
|
125 |
+
for _ in range(layer_count)
|
126 |
+
])
|
127 |
+
self.layernorm_embedding = nn.LayerNorm(embed_count)
|
128 |
+
self.final_ln = nn.LayerNorm(embed_count)
|
129 |
+
token_indices = torch.arange(text_token_count, device=device)
|
130 |
+
self.pose_tokens = torch.stack([token_indices] * 2)
|
131 |
+
|
132 |
+
def forward(self, text_tokens: LongTensor) -> FloatTensor:
|
133 |
+
attention_mask = text_tokens.not_equal(1)
|
134 |
+
encoder_state = (
|
135 |
+
self.embed_tokens.forward(text_tokens) +
|
136 |
+
self.embed_positions.forward(self.pose_tokens)
|
137 |
+
)
|
138 |
+
encoder_state = self.layernorm_embedding.forward(encoder_state)
|
139 |
+
for layer in self.layers:
|
140 |
+
encoder_state = layer.forward(encoder_state, attention_mask)
|
141 |
+
encoder_state = self.final_ln.forward(encoder_state)
|
142 |
+
return encoder_state
|