Update rag_system.py
Browse files- rag_system.py +60 -30
rag_system.py
CHANGED
@@ -8,6 +8,10 @@ from langchain.docstore.document import Document
|
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
import pdfplumber
|
10 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
@@ -28,10 +32,19 @@ def load_retrieval_qa_chain():
|
|
28 |
# Initialize ChatOpenAI model
|
29 |
llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0) # "gpt-4o-mini
|
30 |
|
31 |
-
# Create
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
33 |
llm,
|
34 |
-
|
35 |
return_source_documents=True
|
36 |
)
|
37 |
|
@@ -82,41 +95,58 @@ def update_embeddings():
|
|
82 |
documents.extend(result)
|
83 |
vectorstore.add_documents(documents)
|
84 |
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
formatted_history = [(q, a) for q, a in zip(chat_history[::2], chat_history[1::2])]
|
88 |
|
89 |
-
response =
|
90 |
-
|
91 |
-
answer = response["answer"]
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
95 |
|
96 |
-
return {"answer": answer, "sources":
|
97 |
|
98 |
# Example usage
|
99 |
if __name__ == "__main__":
|
100 |
update_embeddings() # Update embeddings with new documents
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
1. κ²μ κ²°κ³Ό νμ©: μ 곡λ κ²μ κ²°κ³Όλ₯Ό λΆμνκ³ κ΄λ ¨ μ 보λ₯Ό μ¬μ©ν΄ λ΅λ³νμΈμ.
|
105 |
-
|
106 |
-
2. μ νμ± μ μ§: μ 보μ μ νμ±μ νμΈνκ³ , λΆνμ€ν κ²½μ° μ΄λ₯Ό λͺ
μνμΈμ.
|
107 |
-
|
108 |
-
3. κ°κ²°ν μλ΅: μ§λ¬Έμ μ§μ λ΅νκ³ ν΅μ¬ λ΄μ©μ μ§μ€νμΈμ.
|
109 |
-
|
110 |
-
4. μΆκ° μ 보 μ μ: κ΄λ ¨λ μΆκ° μ λ³΄κ° μλ€λ©΄ μΈκΈνμΈμ.
|
111 |
-
|
112 |
-
5. μ€λ¦¬μ± κ³ λ €: κ°κ΄μ μ΄κ³ μ€λ¦½μ μΈ νλλ₯Ό μ μ§νμΈμ.
|
113 |
-
|
114 |
-
6. νκ³ μΈμ : λ΅λ³ν μ μλ κ²½μ° μμ§ν μΈμ νμΈμ.
|
115 |
-
|
116 |
-
7. λν μ μ§: μμ°μ€λ½κ² λνλ₯Ό μ΄μ΄κ°κ³ , νμμ νμ μ§λ¬Έμ μ μνμΈμ.
|
117 |
-
νμ μ ννκ³ μ μ©ν μ 보λ₯Ό μ 곡νλ κ²μ λͺ©νλ‘ νμΈμ."""
|
118 |
-
|
119 |
-
response = get_answer(qa_chain, question, [])
|
120 |
print(f"Question: {question}")
|
121 |
print(f"Answer: {response['answer']}")
|
122 |
-
print(f"Sources: {response['sources']}")
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
import pdfplumber
|
10 |
from concurrent.futures import ThreadPoolExecutor
|
11 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
12 |
+
from langchain.retrievers.document_compressors import LLMChainExtractor
|
13 |
+
from langgraph.graph import Graph
|
14 |
+
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
|
15 |
|
16 |
# Load environment variables
|
17 |
load_dotenv()
|
|
|
32 |
# Initialize ChatOpenAI model
|
33 |
llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0) # "gpt-4o-mini
|
34 |
|
35 |
+
# Create a compressor for re-ranking
|
36 |
+
compressor = LLMChainExtractor.from_llm(llm)
|
37 |
+
|
38 |
+
# Create a ContextualCompressionRetriever
|
39 |
+
compression_retriever = ContextualCompressionRetriever(
|
40 |
+
base_compressor=compressor,
|
41 |
+
base_retriever=vectorstore.as_retriever()
|
42 |
+
)
|
43 |
+
|
44 |
+
# Create ConversationalRetrievalChain with the new retriever
|
45 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
46 |
llm,
|
47 |
+
retriever=compression_retriever,
|
48 |
return_source_documents=True
|
49 |
)
|
50 |
|
|
|
95 |
documents.extend(result)
|
96 |
vectorstore.add_documents(documents)
|
97 |
|
98 |
+
def create_rag_graph():
|
99 |
+
qa_chain = load_retrieval_qa_chain()
|
100 |
+
|
101 |
+
def retrieve_and_generate(inputs):
|
102 |
+
question = inputs["question"]
|
103 |
+
chat_history = inputs["chat_history"]
|
104 |
+
result = qa_chain({"question": question, "chat_history": chat_history})
|
105 |
+
|
106 |
+
# Ensure source documents have the correct metadata
|
107 |
+
sources = []
|
108 |
+
for doc in result.get("source_documents", []):
|
109 |
+
if "source" in doc.metadata and "page" in doc.metadata:
|
110 |
+
sources.append(f"{os.path.basename(doc.metadata['source'])} (Page {doc.metadata['page']})")
|
111 |
+
else:
|
112 |
+
print(f"Warning: Document missing metadata: {doc.metadata}")
|
113 |
+
|
114 |
+
return {
|
115 |
+
"answer": result["answer"],
|
116 |
+
"sources": sources
|
117 |
+
}
|
118 |
+
|
119 |
+
workflow = Graph()
|
120 |
+
workflow.add_node("retrieve_and_generate", retrieve_and_generate)
|
121 |
+
workflow.set_entry_point("retrieve_and_generate")
|
122 |
+
|
123 |
+
chain = workflow.compile()
|
124 |
+
return chain
|
125 |
+
|
126 |
+
rag_chain = create_rag_graph()
|
127 |
+
|
128 |
+
def get_answer(query, chat_history):
|
129 |
formatted_history = [(q, a) for q, a in zip(chat_history[::2], chat_history[1::2])]
|
130 |
|
131 |
+
response = rag_chain.invoke({"question": query, "chat_history": formatted_history})
|
|
|
|
|
132 |
|
133 |
+
# Validate response format
|
134 |
+
if "answer" not in response or "sources" not in response:
|
135 |
+
print("Warning: Unexpected response format")
|
136 |
+
return {"answer": "Error in processing", "sources": []}
|
137 |
|
138 |
+
return {"answer": response["answer"], "sources": response["sources"]}
|
139 |
|
140 |
# Example usage
|
141 |
if __name__ == "__main__":
|
142 |
update_embeddings() # Update embeddings with new documents
|
143 |
+
question = "RAG μμ€ν
μ λν΄ μ€λͺ
ν΄μ£ΌμΈμ."
|
144 |
+
response = get_answer(question, [])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
print(f"Question: {question}")
|
146 |
print(f"Answer: {response['answer']}")
|
147 |
+
print(f"Sources: {response['sources']}")
|
148 |
+
|
149 |
+
# Validate source format
|
150 |
+
for source in response['sources']:
|
151 |
+
if not (source.endswith(')') and ' (Page ' in source):
|
152 |
+
print(f"Warning: Unexpected source format: {source}")
|