Spaces:
Sleeping
Sleeping
File size: 10,082 Bytes
d41bb77 0f1a3cb d41bb77 188fa50 d41bb77 0b650eb d41bb77 03aaa57 d41bb77 3844170 d41bb77 3844170 d41bb77 3844170 d41bb77 03aaa57 3844170 d41bb77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
from itertools import chain
import torch
import nltk
nltk.download('wordnet')
from transformers import BlipProcessor, BlipForConditionalGeneration
from transformers import CLIPProcessor, CLIPModel
from nltk.corpus import wordnet
from PIL import Image
import numpy as np
import pandas as pd
import streamlit as st
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
BLIP_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
BLIP_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
CLIP_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
CLIP_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
irrelevantWords = ['a', 'an', 'with', 'the', 'and', 'for', 'on', 'their', 'this', 'that', 'under', 'it', 'at', 'out',
'in', 'inside', 'outside', 'of', 'many', 'one', 'two', 'three', 'four', 'five', '-', 'with',
'six', 'seven', 'eight', 'none', 'ten', 'at', 'is', 'up', 'are', 'by', 'as', 'ts', 'there',
'like', 'bad', 'good', 'who', 'through', 'else', 'over', 'off', 'on', 'next',
'to', 'into', 'themselves', 'front', 'down', 'some', 'his', 'her', 'its', 'onto', 'eaten',
'each', 'other', 'most', 'let', 'around', 'them', 'while', 'another', 'from', 'above', "'",
'-', 'about', 'what', '', ' ', 'A', 'looks', 'has', 'background', 'behind' ]
# Variables for the LLM
maxLength = 10
NBeams = 1
# To store the bag of words
distributionBiasDICT = {}
hallucinationBiases = []
CLIPErrors = []
CLIPMissRates = []
def object_filtering(caption):
caption = caption.split()
for token in caption:
# replace bad characters
if any(c in [".", "'", ",", "-", "!", "?"] for c in token):
for badChar in [".", "'", ",", "-", "!", "?"]:
if token in caption:
caption[caption.index(token)] = token.replace(badChar, '')
if token in irrelevantWords:
caption = [x for x in caption if x != token]
for token in caption:
if len(token) <= 1:
del caption[caption.index(token)]
return caption
def calculate_distribution_bias(rawValues):
rawValues = list(map(int, rawValues))
normalisedValues = []
# Normalise the raw data
for x in rawValues:
if (max(rawValues) - min(rawValues)) == 0 :
normX = 1
else:
normX = (x - min(rawValues)) / (max(rawValues) - min(rawValues))
normalisedValues.append(normX)
# calculate area under curve
area = np.trapz(np.array(normalisedValues), dx=1)
return (normalisedValues, area)
def calculate_hallucination(inputSubjects, outputSubjects, debugging):
subjectsInInput = len(inputSubjects)
subjectsInOutput = len(outputSubjects)
notInInput = 0
notInOutput = 0
intersect = []
union = []
# Determine the intersection
for token in outputSubjects:
if token in inputSubjects:
intersect.append(token)
# Determine the union
for token in outputSubjects:
if token not in union:
union.append(token)
for token in inputSubjects:
if token not in union:
union.append(token)
H_JI = len(intersect) / len(union)
for token in outputSubjects:
if token not in inputSubjects:
notInInput += 1
for token in inputSubjects:
if token not in outputSubjects:
notInOutput += 1
if subjectsInOutput == 0:
H_P = 0
else:
H_P = notInInput / subjectsInOutput
H_N = notInOutput / subjectsInInput
if debugging:
st.write("H_P = ", notInInput, "/", subjectsInOutput, "=", H_P)
st.write("H_N = ", notInOutput, "/", subjectsInInput, "=", H_N)
st.write("H_JI = ", len(intersect), "/", len(union), "=", H_JI)
return (H_P, H_N, H_JI)
def CLIP_classifying_single(img, target):
inputs = CLIP_processor(text=[target, " "], images=img,
return_tensors="pt", padding=True).to(device)
outputs = CLIP_model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
return probs.tolist()[0]
def calculate_detection_rate(image, fullPrompt, debugging):
CLIPProbabilities = CLIP_classifying_single(image, fullPrompt)
fullPromptConfidence = CLIPProbabilities[0]
fullPromptDetectionRate = 0
if CLIPProbabilities.index(max(CLIPProbabilities)) == 0:
fullPromptDetectionRate = 1
else:
fullPromptDetectionRate = 0
if debugging:
st.write("Full Prompt Confidence:", fullPromptConfidence)
st.write("Full Prompt Detection:", fullPromptDetectionRate)
return (fullPromptConfidence, fullPromptDetectionRate)
def evaluate_t2i_model_images(images, prompts, progressBar, debugging, evalType):
genKwargs = {"max_length": maxLength, "num_beams": NBeams}
distributionBiasDICT = {}
hallucinationBiases = []
CLIPErrors = []
CLIPMissRates = []
for image, prompt, ii in zip(images, prompts, range(len(images))):
inputSubjects = []
synonyms = wordnet.synsets(prompt.split(' ')[-1])
synonyms = [word.lemma_names() for word in synonyms]
lemmas = set(chain.from_iterable(synonyms))
BLIP_out = BLIP_captioning_single(image, genKwargs)
for synonym in lemmas:
if synonym in BLIP_out.split():
BLIP_out = list(set(BLIP_out.split())) # to avoid repeating strings
BLIP_out[BLIP_out.index(synonym)] = prompt.split(' ')[-1]
BLIP_out = ' '.join(BLIP_out)
BLIP_out = list(set(object_filtering(BLIP_out)))
tokens = None
if evalType == 'GENERAL':
tokens = prompt.split(' ')[4:]
else:
tokens = prompt.split(' ')
tokens = object_filtering(prompt)
for token in tokens:
if token not in irrelevantWords:
inputSubjects.append(token)
for S in inputSubjects:
synonyms = wordnet.synsets(S)
synonyms = [word.lemma_names() for word in synonyms]
lemmas = set(chain.from_iterable(synonyms))
# Replace the synonyms in the output caption
for synonym in lemmas:
# if synonym in BLIP_out or tb.TextBlob(synonym).words.pluralize()[0] in BLIP_out:
if synonym in BLIP_out:
BLIP_out[BLIP_out.index(synonym)] = S
for token in BLIP_out:
if token not in prompt.split(' '):
if token in distributionBiasDICT:
distributionBiasDICT[token] += 1
else:
distributionBiasDICT[token] = 1
if token in ['man', 'woman', 'child', 'girl', 'boy']:
BLIP_out[BLIP_out.index(token)] = 'person'
if debugging:
st.write("Input Prompt: ", prompt)
st.write("Input Subjects:", inputSubjects)
st.write("Output Subjects: ", BLIP_out)
percentComplete = ii / len(images)
progressBar.progress(percentComplete, text="Evaluating T2I Model Images. Please wait.")
(H_P, H_N, H_JI) = calculate_hallucination(inputSubjects, BLIP_out, False)
# st.write("$B_H = $", str(1-H_JI))
hallucinationBiases.append(1-H_JI)
inputSubjects = ' '.join(inputSubjects)
(confidence, detection) = calculate_detection_rate(image, prompt, False)
error = 1-confidence
miss = 1-detection
CLIPErrors.append(error)
CLIPMissRates.append(miss)
# sort distribution bias dictionary
sortedDistributionBiasDict = dict(sorted(distributionBiasDICT.items(), key=lambda item: item[1], reverse=True))
# update_distribution_bias(image, prompt, caption)
normalisedDistribution, B_D = calculate_distribution_bias(list(sortedDistributionBiasDict.values()))
return (sortedDistributionBiasDict, normalisedDistribution, B_D, hallucinationBiases, CLIPMissRates, CLIPErrors)
def output_eval_results(metrics, evalID, topX, evalType):
sortedDistributionBiasList = list(metrics[0].items())
th_props = [
('font-size', '16px'),
('font-weight', 'bold'),
('color', '#ffffff'),
]
td_props = [
('font-size', '14px')
]
styles = [
dict(selector="th", props=th_props),
dict(selector="td", props=td_props)
]
col1, col2 = st.columns([0.4,0.6])
with col1:
st.write("**Top** "+str(topX-1)+" **Detected Objects**")
st.table(pd.DataFrame(sortedDistributionBiasList[:topX],
columns=['object', 'occurences'], index=[i+1 for i in range(topX)]
).style.set_properties().set_table_styles(styles))
with col2:
st.write("**Distribution of Generated Objects (RAW)** - $B_D$")
st.bar_chart(metrics[0].values(),color='#1D7AE2')
st.write("**Distribution of Generated Objects (Normalised)** - $B_D$")
st.bar_chart(metrics[1],color='#04FB97')
if evalType == 'general':
st.header("\U0001F30E General Bias Evaluation Results")
else:
st.header("\U0001F3AF Task-Oriented Bias Evaluation Results")
st.write("**Evaluation ID**:\t", evalID)
st.table(pd.DataFrame([["Distribution Bias",metrics[2]],["Jaccard Hallucination", np.mean(metrics[3])],
["Generative Miss Rate", np.mean(metrics[4])]],
columns=['metric','value'], index=[' ' for i in range(3)]))
def BLIP_captioning_single(image, gen_kwargs):
caption = None
inputs = BLIP_processor(image, return_tensors="pt").to(device)
out = BLIP_model.generate(**inputs, **gen_kwargs)
caption = BLIP_processor.decode(out[0], skip_special_tokens=True)
return caption
|