JVice commited on
Commit
d9725db
·
verified ·
1 Parent(s): 1fdf512

Updated for V2.0

Browse files
Files changed (1) hide show
  1. tab_manager.py +29 -20
tab_manager.py CHANGED
@@ -7,12 +7,14 @@ import pandas as pd
7
  import numpy as np
8
  import json
9
  import csv
 
10
  from itertools import cycle
11
  import random
12
  import time
13
  import datetime
14
  import zipfile
15
  from io import BytesIO, StringIO
 
16
  def completed_setup(tabs, modelID):
17
  with tabs[0]:
18
  st.write("\U0001F917 ", modelID, " has been loaded!")
@@ -29,13 +31,15 @@ def completed_setup(tabs, modelID):
29
  general_bias_eval_setup(tabs[0], modelID, tabs[3])
30
  with tabs[1]:
31
  task_oriented_bias_eval_setup(tabs[1],modelID, tabs[3])
 
32
  def general_bias_eval_setup(tab, modelID, imagesTab):
33
 
34
  generalBiasSetupDF_EVAL = pd.DataFrame(
35
  {
36
  "GEN Eval. Variable": ["No. Images to Generate per prompt", "No. Inference Steps",
37
- "Image Size - must be a value that is 2 to the power of N"],
38
- "GEN Values": ["2", "10", "512"],
 
39
  }
40
  )
41
  generalBiasSetupDF_TYPE = pd.DataFrame(
@@ -84,13 +88,13 @@ def general_bias_eval_setup(tab, modelID, imagesTab):
84
  )
85
  st.info('Image sizes vary for each model but is generally one of [256, 512, 1024, 2048]. We found that for some models '
86
  'lower image resolutions resulted in noise outputs (you are more than welcome to experiment with this). '
87
- 'Consult the model card if you are unsure what image resolution to use. Rectangular '
88
- 'image sizes will be supported soon \U0001F601.', icon="ℹ️")
89
- if not all([GENValTable["GEN Values"][0].isnumeric(), GENValTable["GEN Values"][1].isnumeric(), GENValTable["GEN Values"][2].isnumeric()]):
90
  st.error('Looks like you have entered non-numeric values! '
91
  'Please enter numeric values in the table above', icon="🚨")
92
  # elif not all([check_for_power_of_two(int(GENValTable["GEN Values"][2])), int(GENValTable["GEN Values"][2]) >= 8]):
93
- elif int(GENValTable["GEN Values"][2]) < 8:
94
  st.error('Please ensure that your image resolution is 1 number greater than 8. Consult the model card to find the size of the images used'
95
  ' to train the model. Incompatible image resolutions may result in noisy output images', icon="🚨")
96
  else:
@@ -123,8 +127,9 @@ def task_oriented_bias_eval_setup(tab, modelID, imagesTab):
123
  biasSetupDF_EVAL = pd.DataFrame(
124
  {
125
  "TO Eval. Variable": ["No. Images to Generate per prompt", "No. Inference Steps",
126
- "Image Size - must be a value that is 2 to the power of N"],
127
- "TO Values": ["2", "10", "512"],
 
128
  }
129
  )
130
  with tab:
@@ -150,16 +155,16 @@ def task_oriented_bias_eval_setup(tab, modelID, imagesTab):
150
  num_rows="fixed",
151
  )
152
  st.info('Image sizes vary for each model but is generally one of [256, 512, 1024, 2048]. We found that for some models '
153
- 'lower image resolutions resulted in noise outputs (you are more than welcome to experiment with this). '
154
- 'Consult the model card if you are unsure what image resolution to use. Rectangular '
155
- 'image sizes will be supported soon \U0001F601.', icon="ℹ️")
156
  target = st.text_input('What is the single-token target of your task-oriented evaluation study '
157
  'e.g.: "burger", "coffee", "men", "women"')
158
 
159
- if not all([TOValTable["TO Values"][0].isnumeric(), TOValTable["TO Values"][1].isnumeric(), TOValTable["TO Values"][2].isnumeric()]):
 
160
  st.error('Looks like you have entered non-numeric values! '
161
  'Please enter numeric values in the table above', icon="🚨")
162
- elif int(TOValTable["TO Values"][2]) < 8:
163
  st.error('Please ensure that your image resolution is 1 number greater than 8. Consult the model card to find the size of the images used'
164
  ' to train the model. Incompatible image resolutions may result in noisy output images', icon="🚨")
165
  else:
@@ -236,7 +241,7 @@ def initiate_general_bias_evaluation(tab, modelID, specs, imagesTab):
236
  with infoColumn1:
237
  st.write(" ***No. Images per prompt*** = ", specs[0]["GEN Values"][0])
238
  st.write(" ***No. Steps*** = ", specs[0]["GEN Values"][1])
239
- st.write(" ***Image Size*** = ", specs[0]["GEN Values"][2], "$\\times$", specs[0]["GEN Values"][2])
240
  with infoColumn2:
241
  st.write(" ***Objects*** = ", specs[1]["Check"][0])
242
  st.write(" ***Objects and Actions*** = ", specs[1]["Check"][1])
@@ -273,7 +278,8 @@ def initiate_general_bias_evaluation(tab, modelID, specs, imagesTab):
273
  OBJECTprogressBar = st.progress(0, text="Generating Object-related images. Please wait.")
274
  objectImages, objectCaptions = MINFER.generate_test_images(OBJECTprogressBar, "Generating Object-related images. Please wait.",
275
  objectPrompts, int(specs[0]["GEN Values"][0]),
276
- int(specs[0]["GEN Values"][1]), int(specs[0]["GEN Values"][2]))
 
277
  evaluationImages+=objectImages
278
  evaluationCaptions+=objectCaptions[0]
279
  TXTObjectPrompts = ""
@@ -282,7 +288,8 @@ def initiate_general_bias_evaluation(tab, modelID, specs, imagesTab):
282
  OCCprogressBar = st.progress(0, text="Generating Occupation-related images. Please wait.")
283
  occupationImages, occupationCaptions = MINFER.generate_test_images(OCCprogressBar, "Generating Occupation-related images. Please wait.",
284
  occupationPrompts, int(specs[0]["GEN Values"][0]),
285
- int(specs[0]["GEN Values"][1]), int(specs[0]["GEN Values"][2]))
 
286
  evaluationImages += occupationImages
287
  evaluationCaptions += occupationCaptions[0]
288
 
@@ -301,7 +308,7 @@ def initiate_general_bias_evaluation(tab, modelID, specs, imagesTab):
301
  user_evaluation_variables.DIST_BIAS = float(f"{user_evaluation_variables.EVAL_METRICS[2]:.4f}")
302
  user_evaluation_variables.HALLUCINATION = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[3]):.4f}")
303
  user_evaluation_variables.MISS_RATE = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[4]):.4f}")
304
- user_evaluation_variables.EVAL_ID = MCOMP.get_evaluation_id('general', True)
305
  user_evaluation_variables.DATE = datetime.datetime.utcnow().strftime('%d-%m-%Y')
306
  user_evaluation_variables.TIME = datetime.datetime.utcnow().strftime('%H:%M:%S')
307
  user_evaluation_variables.RUN_TIME = str(datetime.timedelta(seconds=elapsedTime)).split(".")[0]
@@ -323,7 +330,7 @@ def initiate_task_oriented_bias_evaluation(tab, modelID, specs, target, imagesTa
323
  infoColumn1, infoColumn2 = st.columns(2)
324
  st.write(" ***No. Images per prompt*** = ", specs["TO Values"][0])
325
  st.write(" ***No. Steps*** = ", specs["TO Values"][1])
326
- st.write(" ***Image Size*** = ", specs["TO Values"][2], "$\\times$", specs["TO Values"][2])
327
  st.write(" ***Target*** = ", target.lower())
328
  st.markdown("___")
329
 
@@ -353,7 +360,8 @@ def initiate_task_oriented_bias_evaluation(tab, modelID, specs, target, imagesTa
353
  TASKprogressBar = st.progress(0, text="Generating Task-oriented images. Please wait.")
354
  TASKImages, TASKCaptions = MINFER.generate_task_oriented_images(TASKprogressBar,"Generating Task-oriented images. Please wait.",
355
  prompts, cocoIDs, int(specs["TO Values"][0]),
356
- int(specs["TO Values"][1]), int(specs["TO Values"][2]))
 
357
 
358
  EVALprogressBar = st.progress(0, text="Evaluating " + modelID + " Model Images. Please wait.")
359
  user_evaluation_variables.EVAL_METRICS = GBM.evaluate_t2i_model_images(TASKImages, TASKCaptions[0], EVALprogressBar, False, "TASK")
@@ -367,7 +375,7 @@ def initiate_task_oriented_bias_evaluation(tab, modelID, specs, target, imagesTa
367
  user_evaluation_variables.HALLUCINATION = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[3]):.4f}")
368
  user_evaluation_variables.MISS_RATE = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[4]):.4f}")
369
  user_evaluation_variables.TASK_TARGET = target.lower()
370
- user_evaluation_variables.EVAL_ID = MCOMP.get_evaluation_id('task-oriented', True)
371
  user_evaluation_variables.DATE = datetime.datetime.utcnow().strftime('%d-%m-%Y')
372
  user_evaluation_variables.TIME = datetime.datetime.utcnow().strftime('%H:%M:%S')
373
  user_evaluation_variables.RUN_TIME = str(datetime.timedelta(seconds=elapsedTime)).split(".")[0]
@@ -377,6 +385,7 @@ def initiate_task_oriented_bias_evaluation(tab, modelID, specs, target, imagesTa
377
  user_evaluation_variables.TASK_COCOIDs = cocoIDs
378
 
379
  user_evaluation_variables.CURRENT_EVAL_TYPE = 'task-oriented'
 
380
  def download_and_zip_images(zipImagePath, images, captions, imageType):
381
  if imageType == 'object':
382
  csvFileName = 'object_prompts.csv'
 
7
  import numpy as np
8
  import json
9
  import csv
10
+ import string
11
  from itertools import cycle
12
  import random
13
  import time
14
  import datetime
15
  import zipfile
16
  from io import BytesIO, StringIO
17
+
18
  def completed_setup(tabs, modelID):
19
  with tabs[0]:
20
  st.write("\U0001F917 ", modelID, " has been loaded!")
 
31
  general_bias_eval_setup(tabs[0], modelID, tabs[3])
32
  with tabs[1]:
33
  task_oriented_bias_eval_setup(tabs[1],modelID, tabs[3])
34
+
35
  def general_bias_eval_setup(tab, modelID, imagesTab):
36
 
37
  generalBiasSetupDF_EVAL = pd.DataFrame(
38
  {
39
  "GEN Eval. Variable": ["No. Images to Generate per prompt", "No. Inference Steps",
40
+ "Image Height - must be a value that is 2 to the power of N",
41
+ "Image Width - must be a value that is 2 to the power of N"],
42
+ "GEN Values": ["2", "10", "512", "512"],
43
  }
44
  )
45
  generalBiasSetupDF_TYPE = pd.DataFrame(
 
88
  )
89
  st.info('Image sizes vary for each model but is generally one of [256, 512, 1024, 2048]. We found that for some models '
90
  'lower image resolutions resulted in noise outputs (you are more than welcome to experiment with this). '
91
+ 'Consult the model card if you are unsure what image resolution to use.', icon="ℹ️")
92
+ if not all([GENValTable["GEN Values"][0].isnumeric(), GENValTable["GEN Values"][1].isnumeric(),
93
+ GENValTable["GEN Values"][2].isnumeric(), GENValTable["GEN Values"][3].isnumeric()]):
94
  st.error('Looks like you have entered non-numeric values! '
95
  'Please enter numeric values in the table above', icon="🚨")
96
  # elif not all([check_for_power_of_two(int(GENValTable["GEN Values"][2])), int(GENValTable["GEN Values"][2]) >= 8]):
97
+ elif any(int(GENValTable["GEN Values"][2]), int(GENValTable["GEN Values"][3])) < 8:
98
  st.error('Please ensure that your image resolution is 1 number greater than 8. Consult the model card to find the size of the images used'
99
  ' to train the model. Incompatible image resolutions may result in noisy output images', icon="🚨")
100
  else:
 
127
  biasSetupDF_EVAL = pd.DataFrame(
128
  {
129
  "TO Eval. Variable": ["No. Images to Generate per prompt", "No. Inference Steps",
130
+ "Image Height - must be a value that is 2 to the power of N",
131
+ "Image Width - must be a value that is 2 to the power of N"],
132
+ "TO Values": ["2", "10", "512", "512"],
133
  }
134
  )
135
  with tab:
 
155
  num_rows="fixed",
156
  )
157
  st.info('Image sizes vary for each model but is generally one of [256, 512, 1024, 2048]. We found that for some models '
158
+ 'lower image resolutions resulted in noise outputs (you are more than welcome to experiment with this). '
159
+ 'Consult the model card if you are unsure what image resolution to use.', icon="ℹ️")
 
160
  target = st.text_input('What is the single-token target of your task-oriented evaluation study '
161
  'e.g.: "burger", "coffee", "men", "women"')
162
 
163
+ if not all([TOValTable["TO Values"][0].isnumeric(), TOValTable["TO Values"][1].isnumeric(),
164
+ TOValTable["TO Values"][2].isnumeric(), TOValTable["TO Values"][3].isnumeric()]):
165
  st.error('Looks like you have entered non-numeric values! '
166
  'Please enter numeric values in the table above', icon="🚨")
167
+ elif any(int(TOValTable["TO Values"][2]), int(TOValTable["TO Values"][3])) < 8:
168
  st.error('Please ensure that your image resolution is 1 number greater than 8. Consult the model card to find the size of the images used'
169
  ' to train the model. Incompatible image resolutions may result in noisy output images', icon="🚨")
170
  else:
 
241
  with infoColumn1:
242
  st.write(" ***No. Images per prompt*** = ", specs[0]["GEN Values"][0])
243
  st.write(" ***No. Steps*** = ", specs[0]["GEN Values"][1])
244
+ st.write(" ***Image Size*** = ", specs[0]["GEN Values"][2], "$\\times$", specs[0]["GEN Values"][3])
245
  with infoColumn2:
246
  st.write(" ***Objects*** = ", specs[1]["Check"][0])
247
  st.write(" ***Objects and Actions*** = ", specs[1]["Check"][1])
 
278
  OBJECTprogressBar = st.progress(0, text="Generating Object-related images. Please wait.")
279
  objectImages, objectCaptions = MINFER.generate_test_images(OBJECTprogressBar, "Generating Object-related images. Please wait.",
280
  objectPrompts, int(specs[0]["GEN Values"][0]),
281
+ int(specs[0]["GEN Values"][1]), int(specs[0]["GEN Values"][2]),
282
+ int(specs[0]["GEN Values"][3]))
283
  evaluationImages+=objectImages
284
  evaluationCaptions+=objectCaptions[0]
285
  TXTObjectPrompts = ""
 
288
  OCCprogressBar = st.progress(0, text="Generating Occupation-related images. Please wait.")
289
  occupationImages, occupationCaptions = MINFER.generate_test_images(OCCprogressBar, "Generating Occupation-related images. Please wait.",
290
  occupationPrompts, int(specs[0]["GEN Values"][0]),
291
+ int(specs[0]["GEN Values"][1]), int(specs[0]["GEN Values"][2]),
292
+ int(specs[0]["GEN Values"][3]))
293
  evaluationImages += occupationImages
294
  evaluationCaptions += occupationCaptions[0]
295
 
 
308
  user_evaluation_variables.DIST_BIAS = float(f"{user_evaluation_variables.EVAL_METRICS[2]:.4f}")
309
  user_evaluation_variables.HALLUCINATION = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[3]):.4f}")
310
  user_evaluation_variables.MISS_RATE = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[4]):.4f}")
311
+ user_evaluation_variables.EVAL_ID = ''.join(random.choices(string.ascii_letters + string.digits, k=16))
312
  user_evaluation_variables.DATE = datetime.datetime.utcnow().strftime('%d-%m-%Y')
313
  user_evaluation_variables.TIME = datetime.datetime.utcnow().strftime('%H:%M:%S')
314
  user_evaluation_variables.RUN_TIME = str(datetime.timedelta(seconds=elapsedTime)).split(".")[0]
 
330
  infoColumn1, infoColumn2 = st.columns(2)
331
  st.write(" ***No. Images per prompt*** = ", specs["TO Values"][0])
332
  st.write(" ***No. Steps*** = ", specs["TO Values"][1])
333
+ st.write(" ***Image Size*** = ", specs["TO Values"][2], "$\\times$", specs["TO Values"][3])
334
  st.write(" ***Target*** = ", target.lower())
335
  st.markdown("___")
336
 
 
360
  TASKprogressBar = st.progress(0, text="Generating Task-oriented images. Please wait.")
361
  TASKImages, TASKCaptions = MINFER.generate_task_oriented_images(TASKprogressBar,"Generating Task-oriented images. Please wait.",
362
  prompts, cocoIDs, int(specs["TO Values"][0]),
363
+ int(specs["TO Values"][1]), int(specs["TO Values"][2]),
364
+ int(specs["TO Values"][3]))
365
 
366
  EVALprogressBar = st.progress(0, text="Evaluating " + modelID + " Model Images. Please wait.")
367
  user_evaluation_variables.EVAL_METRICS = GBM.evaluate_t2i_model_images(TASKImages, TASKCaptions[0], EVALprogressBar, False, "TASK")
 
375
  user_evaluation_variables.HALLUCINATION = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[3]):.4f}")
376
  user_evaluation_variables.MISS_RATE = float(f"{np.mean(user_evaluation_variables.EVAL_METRICS[4]):.4f}")
377
  user_evaluation_variables.TASK_TARGET = target.lower()
378
+ user_evaluation_variables.EVAL_ID = ''.join(random.choices(string.ascii_letters + string.digits, k=16))
379
  user_evaluation_variables.DATE = datetime.datetime.utcnow().strftime('%d-%m-%Y')
380
  user_evaluation_variables.TIME = datetime.datetime.utcnow().strftime('%H:%M:%S')
381
  user_evaluation_variables.RUN_TIME = str(datetime.timedelta(seconds=elapsedTime)).split(".")[0]
 
385
  user_evaluation_variables.TASK_COCOIDs = cocoIDs
386
 
387
  user_evaluation_variables.CURRENT_EVAL_TYPE = 'task-oriented'
388
+
389
  def download_and_zip_images(zipImagePath, images, captions, imageType):
390
  if imageType == 'object':
391
  csvFileName = 'object_prompts.csv'