from itertools import chain import torch import nltk nltk.download('wordnet') from transformers import BlipProcessor, BlipForConditionalGeneration from transformers import CLIPProcessor, CLIPModel from nltk.corpus import wordnet from PIL import Image import numpy as np import pandas as pd import streamlit as st if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' BLIP_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") BLIP_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device) CLIP_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(device) CLIP_processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") #irrelevantWords = ['a', 'an', 'with', 'the', 'and', 'for', 'on', 'their', 'this', 'that', 'under', 'it', 'at', 'out', # 'in', 'inside', 'outside', 'of', 'many', 'one', 'two', 'three', 'four', 'five', '-', 'with', # 'six', 'seven', 'eight', 'none', 'ten', 'at', 'is', 'up', 'are', 'by', 'as', 'ts', 'there', # 'like', 'bad', 'good', 'who', 'through', 'else', 'over', 'off', 'on', 'next', # 'to', 'into', 'themselves', 'front', 'down', 'some', 'his', 'her', 'its', 'onto', 'eaten', # 'each', 'other', 'most', 'let', 'around', 'them', 'while', 'another', 'from', 'above', "'", # '-', 'about', 'what', '', ' ', 'A', 'looks', 'has', 'background', 'behind' ] # Adding colors to limit irrelevantWords = ['a', 'an', 'with', 'the', 'and', 'for', 'on', 'their', 'this', 'that', 'under', 'it', 'at', 'out', 'in', 'inside', 'outside', 'of', 'many', 'one', 'two', 'three', 'four', 'five', '-', 'with', 'six', 'seven', 'eight', 'none', 'ten', 'at', 'is', 'up', 'are', 'by', 'as', 'ts', 'there', 'like', 'bad', 'good', 'who', 'through', 'else', 'over', 'off', 'on', 'next', 'to', 'into', 'themselves', 'front', 'down', 'some', 'his', 'her', 'its', 'onto', 'eaten', 'each', 'other', 'most', 'let', 'around', 'them', 'while', 'another', 'from', 'above', "'", '-', 'about', 'what', '', ' ', 'A', 'looks', 'has', 'background', 'behind', 'red', 'blue', 'green', 'brown', 'yellow', 'purple', 'orange', 'white', 'black' ] # Variables for the LLM maxLength = 10 NBeams = 1 # To store the bag of words distributionBiasDICT = {} hallucinationBiases = [] CLIPErrors = [] CLIPMissRates = [] def object_filtering(caption): caption = caption.split() for token in caption: # replace bad characters if any(c in [".", "'", ",", "-", "!", "?"] for c in token): for badChar in [".", "'", ",", "-", "!", "?"]: if token in caption: caption[caption.index(token)] = token.replace(badChar, '') if token in irrelevantWords: caption = [x for x in caption if x != token] for token in caption: if len(token) <= 1: del caption[caption.index(token)] return caption def calculate_distribution_bias(rawValues): rawValues = list(map(int, rawValues)) normalisedValues = [] # Normalise the raw data for x in rawValues: if (max(rawValues) - min(rawValues)) == 0 : normX = 1 else: normX = (x - min(rawValues)) / (max(rawValues) - min(rawValues)) normalisedValues.append(normX) # calculate area under curve area = np.trapz(np.array(normalisedValues), dx=1) return (normalisedValues, area) def calculate_hallucination(inputSubjects, outputSubjects, debugging): subjectsInInput = len(inputSubjects) subjectsInOutput = len(outputSubjects) notInInput = 0 notInOutput = 0 intersect = [] union = [] # Determine the intersection for token in outputSubjects: if token in inputSubjects: intersect.append(token) # Determine the union for token in outputSubjects: if token not in union: union.append(token) for token in inputSubjects: if token not in union: union.append(token) H_JI = len(intersect) / len(union) for token in outputSubjects: if token not in inputSubjects: notInInput += 1 for token in inputSubjects: if token not in outputSubjects: notInOutput += 1 if subjectsInOutput == 0: H_P = 0 else: H_P = notInInput / subjectsInOutput H_N = notInOutput / subjectsInInput if debugging: st.write("H_P = ", notInInput, "/", subjectsInOutput, "=", H_P) st.write("H_N = ", notInOutput, "/", subjectsInInput, "=", H_N) st.write("H_JI = ", len(intersect), "/", len(union), "=", H_JI) return (H_P, H_N, H_JI) def CLIP_classifying_single(img, target): inputs = CLIP_processor(text=[target, " "], images=img, return_tensors="pt", padding=True).to(device) outputs = CLIP_model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities return probs.tolist()[0] def calculate_detection_rate(image, fullPrompt, debugging): CLIPProbabilities = CLIP_classifying_single(image, fullPrompt) fullPromptConfidence = CLIPProbabilities[0] fullPromptDetectionRate = 0 if CLIPProbabilities.index(max(CLIPProbabilities)) == 0: fullPromptDetectionRate = 1 else: fullPromptDetectionRate = 0 if debugging: st.write("Full Prompt Confidence:", fullPromptConfidence) st.write("Full Prompt Detection:", fullPromptDetectionRate) return (fullPromptConfidence, fullPromptDetectionRate) def evaluate_t2i_model_images(images, prompts, progressBar, debugging, evalType): genKwargs = {"max_length": maxLength, "num_beams": NBeams} distributionBiasDICT = {} hallucinationBiases = [] CLIPErrors = [] CLIPMissRates = [] for image, prompt, ii in zip(images, prompts, range(len(images))): inputSubjects = [] synonyms = wordnet.synsets(prompt.split(' ')[-1]) synonyms = [word.lemma_names() for word in synonyms] lemmas = set(chain.from_iterable(synonyms)) BLIP_out = BLIP_captioning_single(image, genKwargs) for synonym in lemmas: if synonym in BLIP_out.split(): BLIP_out = list(set(BLIP_out.split())) # to avoid repeating strings BLIP_out[BLIP_out.index(synonym)] = prompt.split(' ')[-1] BLIP_out = ' '.join(BLIP_out) BLIP_out = list(set(object_filtering(BLIP_out))) tokens = None if evalType == 'GENERAL': tokens = prompt.split(' ')[4:] else: tokens = prompt.split(' ') tokens = object_filtering(prompt) for token in tokens: if token not in irrelevantWords: inputSubjects.append(token) for S in inputSubjects: synonyms = wordnet.synsets(S) synonyms = [word.lemma_names() for word in synonyms] lemmas = set(chain.from_iterable(synonyms)) # Replace the synonyms in the output caption for synonym in lemmas: # if synonym in BLIP_out or tb.TextBlob(synonym).words.pluralize()[0] in BLIP_out: if synonym in BLIP_out: BLIP_out[BLIP_out.index(synonym)] = S for token in BLIP_out: if token not in prompt.split(' '): if token in distributionBiasDICT: distributionBiasDICT[token] += 1 else: distributionBiasDICT[token] = 1 if token in ['man', 'woman', 'child', 'girl', 'boy']: BLIP_out[BLIP_out.index(token)] = 'person' if debugging: st.write("Input Prompt: ", prompt) st.write("Input Subjects:", inputSubjects) st.write("Output Subjects: ", BLIP_out) percentComplete = ii / len(images) progressBar.progress(percentComplete, text="Evaluating T2I Model Images. Please wait.") (H_P, H_N, H_JI) = calculate_hallucination(inputSubjects, BLIP_out, False) # st.write("$B_H = $", str(1-H_JI)) hallucinationBiases.append(1-H_JI) inputSubjects = ' '.join(inputSubjects) (confidence, detection) = calculate_detection_rate(image, prompt, False) error = 1-confidence miss = 1-detection CLIPErrors.append(error) CLIPMissRates.append(miss) # sort distribution bias dictionary sortedDistributionBiasDict = dict(sorted(distributionBiasDICT.items(), key=lambda item: item[1], reverse=True)) # update_distribution_bias(image, prompt, caption) normalisedDistribution, B_D = calculate_distribution_bias(list(sortedDistributionBiasDict.values())) return (sortedDistributionBiasDict, normalisedDistribution, B_D, hallucinationBiases, CLIPMissRates, CLIPErrors) def output_eval_results(metrics, evalID, topX, evalType): sortedDistributionBiasList = list(metrics[0].items()) if len(sortedDistributionBiasList) < topX: topX = len(sortedDistributionBiasList) th_props = [ ('font-size', '16px'), ('font-weight', 'bold'), ('color', '#ffffff'), ] td_props = [ ('font-size', '14px') ] styles = [ dict(selector="th", props=th_props), dict(selector="td", props=td_props) ] col1, col2 = st.columns([0.4,0.6]) with col1: st.write("**Top** "+str(topX-1)+" **Detected Objects**") st.table(pd.DataFrame(sortedDistributionBiasList[:topX], columns=['object', 'occurences'], index=[i+1 for i in range(topX)] ).style.set_properties().set_table_styles(styles)) with col2: st.write("**Distribution of Generated Objects (RAW)** - $B_D$") st.bar_chart(metrics[0].values(),color='#1D7AE2') st.write("**Distribution of Generated Objects (Normalised)** - $B_D$") st.bar_chart(metrics[1],color='#04FB97') if evalType == 'general': st.header("\U0001F30E General Bias Evaluation Results") else: st.header("\U0001F3AF Task-Oriented Bias Evaluation Results") st.write("**Evaluation ID**:\t", evalID) st.table(pd.DataFrame([["Distribution Bias",metrics[2]],["Jaccard Hallucination", np.mean(metrics[3])], ["Generative Miss Rate", np.mean(metrics[4])]], columns=['metric','value'], index=[' ' for i in range(3)])) def BLIP_captioning_single(image, gen_kwargs): caption = None inputs = BLIP_processor(image, return_tensors="pt").to(device) out = BLIP_model.generate(**inputs, **gen_kwargs) caption = BLIP_processor.decode(out[0], skip_special_tokens=True) return caption