import yaml from yaml import safe_load import streamlit as st from pathlib import Path from huggingface_hub import CommitScheduler, login EVAL_DATABASE_DIR = Path("data") EVAL_DATABASE_DIR.mkdir(parents=True, exist_ok=True) GEN_EVAL_DATABASE_PATH = EVAL_DATABASE_DIR / f"general_eval_database.yaml" TASK_EVAL_DATABASE_PATH = EVAL_DATABASE_DIR / f"task_oriented_eval_database.yaml" EVAL_DATABASE_UPDATE_SCHEDULER = CommitScheduler( repo_id="try-before-you-bias-data", repo_type="dataset", folder_path=EVAL_DATABASE_DIR, path_in_repo="data", every=3, ) USERNAME = None EVAL_ID = None MODEL = None MODEL_TYPE = None NO_SAMPLES = None RESOLUTION = None INFERENCE_STEPS = None GEN_OBJECTS = None GEN_ACTIONS = None GEN_OCCUPATIONS = None TASK_TARGET = None DIST_BIAS = None HALLUCINATION = None MISS_RATE = None DATE = None TIME = None RUN_TIME = None EVAL_METRICS = None OBJECT_IMAGES = [] OCCUPATION_IMAGES = [] TASK_IMAGES = [] OBJECT_CAPTIONS = None OCCUPATION_CAPTIONS = None TASK_CAPTIONS = None TASK_COCOIDs = None OBJECT_IMAGES_IN_UI = False OCCUPATION_IMAGES_IN_UI = False TASK_IMAGES_IN_UI = False CURRENT_EVAL_TYPE = None def update_evaluation_table(evalType, debugging): global USERNAME global EVAL_ID global MODEL global MODEL_TYPE global NO_SAMPLES global RESOLUTION global INFERENCE_STEPS global GEN_OBJECTS global GEN_ACTIONS global GEN_OCCUPATIONS global TASK_TARGET global DIST_BIAS global HALLUCINATION global MISS_RATE global DATE global TIME global RUN_TIME global CURRENT_EVAL_TYPE global GEN_EVAL_DATABASE_PATH global TASK_EVAL_DATABASE_PATH if debugging: st.write("Username: ", USERNAME) st.write("EVAL_ID: ", EVAL_ID) st.write("MODEL: ", MODEL) st.write("MODEL_TYPE: ", MODEL_TYPE) st.write("NO_SAMPLES: ", NO_SAMPLES) st.write("RESOLUTION: ", RESOLUTION) st.write("INFERENCE_STEPS: ", INFERENCE_STEPS) st.write("GEN_OBJECTS: ", GEN_OBJECTS) st.write("GEN_ACTIONS: ", GEN_ACTIONS) st.write("GEN_OCCUPATIONS: ", GEN_OCCUPATIONS) st.write("TASK_TARGET: ", TASK_TARGET) st.write("DIST_BIAS: ", DIST_BIAS) st.write("HALLUCINATION: ", HALLUCINATION) st.write("MISS_RATE: ", MISS_RATE) st.write("DATE: ", DATE) st.write("TIME: ", TIME) st.write("RUN_TIME: ", RUN_TIME) newEvaluationData = None if evalType == 'general': evalDataPath = GEN_EVAL_DATABASE_PATH newEvaluationData = { "Model": MODEL, "Model Type": MODEL_TYPE, "No. Samples": NO_SAMPLES, "Resolution": RESOLUTION, "Inference Steps": INFERENCE_STEPS, "Objects": GEN_OBJECTS, "Actions": GEN_ACTIONS, "Occupations": GEN_OCCUPATIONS, "Dist. Bias": DIST_BIAS, "Hallucination": HALLUCINATION, "Gen. Miss Rate": MISS_RATE, "Date": DATE, "Time": TIME, "Run Time": RUN_TIME } else: evalDataPath = TASK_EVAL_DATABASE_PATH newEvaluationData = { "Model": MODEL, "Model Type": MODEL_TYPE, "No. Samples": NO_SAMPLES, "Resolution": RESOLUTION, "Inference Steps": INFERENCE_STEPS, "Target": TASK_TARGET, "Dist. Bias": DIST_BIAS, "Hallucination": HALLUCINATION, "Gen. Miss Rate": MISS_RATE, "Date": DATE, "Time": TIME, "Run Time": RUN_TIME } with open(evalDataPath, 'r') as f: yamlData = safe_load(f) # st.write("OLD DATABASE ", yamlData['evaluations']['username'][USERNAME]) if USERNAME not in yamlData['evaluations']['username']: if TASK_TARGET is None: st.success('Congrats on your first General Bias evaluation!', icon='\U0001F388') else: st.success('Congrats on your first Task-Oriented Bias evaluation!', icon='\U0001F388') yamlData['evaluations']['username'][USERNAME]= {} yamlData['evaluations']['username'][USERNAME][EVAL_ID] = newEvaluationData # st.write("NEW DATABASE ", yamlData['evaluations']['username'][USERNAME]) with EVAL_DATABASE_UPDATE_SCHEDULER.lock: with open(evalDataPath, 'w') as yaml_file: yaml_file.write(yaml.dump(yamlData, default_flow_style=False)) def reset_variables(evalType): global USERNAME global EVAL_ID global MODEL global MODEL_TYPE global NO_SAMPLES global RESOLUTION global INFERENCE_STEPS global GEN_OBJECTS global GEN_ACTIONS global GEN_OCCUPATIONS global TASK_TARGET global DIST_BIAS global HALLUCINATION global MISS_RATE global DATE global TIME global RUN_TIME global EVAL_METRICS global OBJECT_IMAGES global OCCUPATION_IMAGES global TASK_IMAGES global OBJECT_CAPTIONS global OCCUPATION_CAPTIONS global TASK_CAPTIONS global TASK_COCOIDs global OBJECT_IMAGES_IN_UI global OCCUPATION_IMAGES_IN_UI global TASK_IMAGES_IN_UI global CURRENT_EVAL_TYPE EVAL_ID = None # MODEL = None # MODEL_TYPE = None NO_SAMPLES = None RESOLUTION = None INFERENCE_STEPS = None GEN_OBJECTS = None GEN_ACTIONS = None GEN_OCCUPATIONS = None TASK_TARGET = None DIST_BIAS = None HALLUCINATION = None MISS_RATE = None DATE = None TIME = None RUN_TIME = None EVAL_METRICS = None CURRENT_EVAL_TYPE = None if evalType == 'general': OBJECT_IMAGES = [] OCCUPATION_IMAGES = [] OBJECT_CAPTIONS = None OCCUPATION_CAPTIONS = None OBJECT_IMAGES_IN_UI = False OCCUPATION_IMAGES_IN_UI = False else: TASK_IMAGES = [] TASK_CAPTIONS = None TASK_COCOIDs = None TASK_IMAGES_IN_UI = False