Spaces:
Sleeping
Sleeping
JVictor-CC
commited on
Commit
·
e3edd55
1
Parent(s):
e8afcbe
Add Model Class and requirements
Browse filesThe Model Class has 3 main methods.
- `download_model` that gets an model url from huggingface and download indo a directory called 'model'.
- `load_local_model` that loads the local model on 'model' directory.
- `inference` that needs a prompt list and generate responses from de model.
- Model.py +61 -0
- requirements.txt +5 -0
Model.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
class Model:
|
6 |
+
def __init__(self, model_url) -> None:
|
7 |
+
self.model_url = model_url
|
8 |
+
self.tokenizer = None
|
9 |
+
self.model = None
|
10 |
+
self.device = "cpu"
|
11 |
+
self.dir_name = None
|
12 |
+
|
13 |
+
def download_model(self) -> bool:
|
14 |
+
self.dir_name = "model"
|
15 |
+
if not os.path.exists(self.dir_name) or not os.listdir(self.dir_name):
|
16 |
+
os.makedirs(self.dir_name)
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_url)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(self.model_url)
|
20 |
+
|
21 |
+
model.save_pretrained(self.dir_name)
|
22 |
+
tokenizer.save_pretrained(self.dir_name)
|
23 |
+
|
24 |
+
print(f"Model saved on '{self.dir_name}' directory.")
|
25 |
+
return True
|
26 |
+
else:
|
27 |
+
print("Model is already downloaded and ready to use.")
|
28 |
+
return False
|
29 |
+
|
30 |
+
def load_local_model(self):
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(self.dir_name)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(self.dir_name)
|
33 |
+
|
34 |
+
if self.device == "cuda" and torch.cuda.is_available():
|
35 |
+
model.to("cuda")
|
36 |
+
|
37 |
+
self.model = model
|
38 |
+
self.tokenizer = tokenizer
|
39 |
+
|
40 |
+
def inference(self, prompt_list) -> list:
|
41 |
+
if self.model != None and self.tokenizer != None:
|
42 |
+
self.model.eval()
|
43 |
+
model_inferences = []
|
44 |
+
|
45 |
+
for prompt in prompt_list:
|
46 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
outputs = self.model.generate(input_ids = inputs["input_ids"], max_new_tokens=512)
|
50 |
+
response = self.tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
|
51 |
+
|
52 |
+
model_inferences.append(response)
|
53 |
+
return model_inferences
|
54 |
+
else:
|
55 |
+
print("Model was not able to make inference, make sure you've loaded the model.")
|
56 |
+
|
57 |
+
def set_cuda(self) -> str:
|
58 |
+
self.device = "cuda"
|
59 |
+
|
60 |
+
def set_cpu(self) -> str:
|
61 |
+
self.device = "cpu"
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
os
|
2 |
+
gradio
|
3 |
+
transformers
|
4 |
+
huggingface-hub
|
5 |
+
|