ConsistentID / pipline_StableDiffusion_ConsistentID.py
JackAILab's picture
Update pipline_StableDiffusion_ConsistentID.py
ba1de1d verified
raw
history blame
27.9 kB
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
import cv2
import PIL
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
from insightface.app import FaceAnalysis
### insight-face installation can be found at https://github.com/deepinsight/insightface
from safetensors import safe_open
from huggingface_hub.utils import validate_hf_hub_args
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from diffusers.utils import _get_model_file
from functions import process_text_with_markers, masks_for_unique_values, fetch_mask_raw_image, tokenize_and_mask_noun_phrases_ends, prepare_image_token_idx
from functions import ProjPlusModel, masks_for_unique_values
from attention import Consistent_IPAttProcessor, Consistent_AttProcessor, FacialEncoder
from huggingface_hub import hf_hub_download
### Model can be imported from https://github.com/zllrunning/face-parsing.PyTorch?tab=readme-ov-file
### We use the ckpt of 79999_iter.pth: https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812
### Thanks for the open source of face-parsing model.
from models.BiSeNet.model import BiSeNet
bise_net_cp_path = hf_hub_download(repo_id="JackAILab/ConsistentID", filename="face_parsing.pth", repo_type="model")
PipelineImageInput = Union[
PIL.Image.Image,
torch.FloatTensor,
List[PIL.Image.Image],
List[torch.FloatTensor],
]
### Download the pretrained model from huggingface and put it locally, then place the model in a local directory and specify the directory location.
class ConsistentIDStableDiffusionPipeline(StableDiffusionPipeline):
@validate_hf_hub_args
def load_ConsistentID_model(
self,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
weight_name: str,
subfolder: str = '',
trigger_word_ID: str = '<|image|>',
trigger_word_facial: str = '<|facial|>',
image_encoder_path: str = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K',
torch_dtype = torch.float16,
num_tokens = 4,
lora_rank= 128,
**kwargs,
):
self.lora_rank = lora_rank
self.torch_dtype = torch_dtype
self.num_tokens = num_tokens
self.set_ip_adapter()
self.image_encoder_path = image_encoder_path
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
self.device, dtype=self.torch_dtype
)
self.clip_image_processor = CLIPImageProcessor()
self.id_image_processor = CLIPImageProcessor()
self.crop_size = 512
# FaceID
self.app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app.prepare(ctx_id=0, det_size=(640, 640))
### BiSeNet
self.bise_net = BiSeNet(n_classes = 19)
self.bise_net.cuda()
self.bise_net_cp=bise_net_cp_path
self.bise_net.load_state_dict(torch.load(self.bise_net_cp))
self.bise_net.eval()
# Colors for all 20 parts
self.part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0],
[255, 0, 85], [255, 0, 170],
[0, 255, 0], [85, 255, 0], [170, 255, 0],
[0, 255, 85], [0, 255, 170],
[0, 0, 255], [85, 0, 255], [170, 0, 255],
[0, 85, 255], [0, 170, 255],
[255, 255, 0], [255, 255, 85], [255, 255, 170],
[255, 0, 255], [255, 85, 255], [255, 170, 255],
[0, 255, 255], [85, 255, 255], [170, 255, 255]]
### LLVA (Optional)
self.llva_model_path = "liuhaotian/llava-v1.5-13b" # TODO
# IMPORTANT! Download the openai/clip-vit-large-patch14-336 model and specify the model path in config.json ("mm_vision_tower": "openai/clip-vit-large-patch14-336").
self.llva_prompt = "Describe this person's facial features for me, including face, ears, eyes, nose, and mouth."
self.llva_tokenizer, self.llva_model, self.llva_image_processor, self.llva_context_len = None,None,None,None #load_pretrained_model(self.llva_model_path)
self.image_proj_model = ProjPlusModel(
cross_attention_dim=self.unet.config.cross_attention_dim,
id_embeddings_dim=512,
clip_embeddings_dim=self.image_encoder.config.hidden_size,
num_tokens=self.num_tokens, # 4 - inspirsed by IPAdapter and Midjourney
).to(self.device, dtype=self.torch_dtype)
self.FacialEncoder = FacialEncoder(self.image_encoder).to(self.device, dtype=self.torch_dtype)
# Load the main state dict first.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
if weight_name.endswith(".safetensors"):
state_dict = {"id_encoder": {}, "lora_weights": {}}
with safe_open(model_file, framework="pt", device="cpu") as f:
### TODO safetensors add
for key in f.keys():
if key.startswith("FacialEncoder."):
state_dict["FacialEncoder"][key.replace("FacialEncoder.", "")] = f.get_tensor(key)
elif key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
else:
state_dict = torch.load(model_file, map_location="cpu")
else:
state_dict = pretrained_model_name_or_path_or_dict
self.trigger_word_ID = trigger_word_ID
self.trigger_word_facial = trigger_word_facial
self.FacialEncoder.load_state_dict(state_dict["FacialEncoder"], strict=True)
self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
ip_layers.load_state_dict(state_dict["adapter_modules"], strict=True)
print(f"Successfully loaded weights from checkpoint")
# Add trigger word token
if self.tokenizer is not None:
self.tokenizer.add_tokens([self.trigger_word_ID], special_tokens=True)
self.tokenizer.add_tokens([self.trigger_word_facial], special_tokens=True)
def set_ip_adapter(self):
unet = self.unet
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = Consistent_AttProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=self.lora_rank,
).to(self.device, dtype=self.torch_dtype)
else:
attn_procs[name] = Consistent_IPAttProcessor(
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, rank=self.lora_rank, num_tokens=self.num_tokens,
).to(self.device, dtype=self.torch_dtype)
unet.set_attn_processor(attn_procs)
@torch.inference_mode()
def get_facial_embeds(self, prompt_embeds, negative_prompt_embeds, facial_clip_images, facial_token_masks, valid_facial_token_idx_mask):
hidden_states = []
uncond_hidden_states = []
for facial_clip_image in facial_clip_images:
hidden_state = self.image_encoder(facial_clip_image.to(self.device, dtype=self.torch_dtype), output_hidden_states=True).hidden_states[-2]
uncond_hidden_state = self.image_encoder(torch.zeros_like(facial_clip_image, dtype=self.torch_dtype).to(self.device), output_hidden_states=True).hidden_states[-2]
hidden_states.append(hidden_state)
uncond_hidden_states.append(uncond_hidden_state)
multi_facial_embeds = torch.stack(hidden_states)
uncond_multi_facial_embeds = torch.stack(uncond_hidden_states)
# condition
facial_prompt_embeds = self.FacialEncoder(prompt_embeds, multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
# uncondition
uncond_facial_prompt_embeds = self.FacialEncoder(negative_prompt_embeds, uncond_multi_facial_embeds, facial_token_masks, valid_facial_token_idx_mask)
return facial_prompt_embeds, uncond_facial_prompt_embeds
@torch.inference_mode()
def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut=False):
clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values
clip_image = clip_image.to(self.device, dtype=self.torch_dtype)
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
uncond_clip_image_embeds = self.image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype)
image_prompt_tokens = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale)
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale)
return image_prompt_tokens, uncond_image_prompt_embeds
def set_scale(self, scale):
for attn_processor in self.pipe.unet.attn_processors.values():
if isinstance(attn_processor, Consistent_IPAttProcessor):
attn_processor.scale = scale
@torch.inference_mode()
def get_prepare_faceid(self, face_image):
faceid_image = np.array(face_image)
faces = self.app.get(faceid_image)
if faces==[]:
faceid_embeds = torch.zeros_like(torch.empty((1, 512)))
else:
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
return faceid_embeds
@torch.inference_mode()
def parsing_face_mask(self, raw_image_refer):
to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
to_pil = transforms.ToPILImage()
with torch.no_grad():
image = raw_image_refer.resize((512, 512), Image.BILINEAR)
image_resize_PIL = image
img = to_tensor(image)
img = torch.unsqueeze(img, 0)
img = img.float().cuda()
out = self.bise_net(img)[0]
parsing_anno = out.squeeze(0).cpu().numpy().argmax(0)
im = np.array(image_resize_PIL)
vis_im = im.copy().astype(np.uint8)
stride=1
vis_parsing_anno = parsing_anno.copy().astype(np.uint8)
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST)
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255
num_of_class = np.max(vis_parsing_anno)
for pi in range(1, num_of_class + 1): # num_of_class=17 pi=1~16
index = np.where(vis_parsing_anno == pi)
vis_parsing_anno_color[index[0], index[1], :] = self.part_colors[pi]
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8)
vis_parsing_anno_color = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0)
return vis_parsing_anno_color, vis_parsing_anno
@torch.inference_mode()
def get_prepare_llva_caption(self, input_image_file, model_path=None, prompt=None):
### Optional: Use the LLaVA
# args = type('Args', (), {
# "model_path": self.llva_model_path,
# "model_base": None,
# "model_name": get_model_name_from_path(self.llva_model_path),
# "query": self.llva_prompt,
# "conv_mode": None,
# "image_file": input_image_file,
# "sep": ",",
# "temperature": 0,
# "top_p": None,
# "num_beams": 1,
# "max_new_tokens": 512
# })()
# face_caption = eval_model(args, self.llva_tokenizer, self.llva_model, self.llva_image_processor)
### Use built-in template
face_caption = "The person has one nose, two eyes, two ears, and a mouth."
return face_caption
@torch.inference_mode()
def get_prepare_facemask(self, input_image_file):
vis_parsing_anno_color, vis_parsing_anno = self.parsing_face_mask(input_image_file)
parsing_mask_list = masks_for_unique_values(vis_parsing_anno)
key_parsing_mask_list = {}
key_list = ["Face", "Left_Ear", "Right_Ear", "Left_Eye", "Right_Eye", "Nose", "Upper_Lip", "Lower_Lip"]
processed_keys = set()
for key, mask_image in parsing_mask_list.items():
if key in key_list:
if "_" in key:
prefix = key.split("_")[1]
if prefix in processed_keys:
continue
else:
key_parsing_mask_list[key] = mask_image
processed_keys.add(prefix)
key_parsing_mask_list[key] = mask_image
return key_parsing_mask_list, vis_parsing_anno_color
def encode_prompt_with_trigger_word(
self,
prompt: str,
face_caption: str,
key_parsing_mask_list = None,
image_token = "<|image|>",
facial_token = "<|facial|>",
max_num_facials = 5,
num_id_images: int = 1,
device: Optional[torch.device] = None,
):
device = device or self._execution_device
face_caption_align, key_parsing_mask_list_align = process_text_with_markers(face_caption, key_parsing_mask_list)
prompt_face = prompt + "Detail:" + face_caption_align
max_text_length=330
if len(self.tokenizer(prompt_face, max_length=self.tokenizer.model_max_length, padding="max_length",truncation=False,return_tensors="pt").input_ids[0])!=77:
prompt_face = "Detail:" + face_caption_align + " Caption:" + prompt
if len(face_caption)>max_text_length:
prompt_face = prompt
face_caption_align = ""
prompt_text_only = prompt_face.replace("<|facial|>", "").replace("<|image|>", "")
tokenizer = self.tokenizer
facial_token_id = tokenizer.convert_tokens_to_ids(facial_token)
image_token_id = None
clean_input_id, image_token_mask, facial_token_mask = tokenize_and_mask_noun_phrases_ends(
prompt_face, image_token_id, facial_token_id, tokenizer)
image_token_idx, image_token_idx_mask, facial_token_idx, facial_token_idx_mask = prepare_image_token_idx(
image_token_mask, facial_token_mask, num_id_images, max_num_facials )
return prompt_text_only, clean_input_id, key_parsing_mask_list_align, facial_token_mask, facial_token_idx, facial_token_idx_mask
@torch.inference_mode()
def get_prepare_clip_image(self, input_image_file, key_parsing_mask_list, image_size=512, max_num_facials=5, change_facial=True):
facial_mask = []
facial_clip_image = []
transform_mask = transforms.Compose([transforms.CenterCrop(size=image_size), transforms.ToTensor(),])
clip_image_processor = CLIPImageProcessor()
num_facial_part = len(key_parsing_mask_list)
for key in key_parsing_mask_list:
key_mask=key_parsing_mask_list[key]
facial_mask.append(transform_mask(key_mask))
key_mask_raw_image = fetch_mask_raw_image(input_image_file,key_mask)
parsing_clip_image = clip_image_processor(images=key_mask_raw_image, return_tensors="pt").pixel_values
facial_clip_image.append(parsing_clip_image)
padding_ficial_clip_image = torch.zeros_like(torch.zeros([1, 3, 224, 224]))
padding_ficial_mask = torch.zeros_like(torch.zeros([1, image_size, image_size]))
if num_facial_part < max_num_facials:
facial_clip_image += [torch.zeros_like(padding_ficial_clip_image) for _ in range(max_num_facials - num_facial_part) ]
facial_mask += [ torch.zeros_like(padding_ficial_mask) for _ in range(max_num_facials - num_facial_part)]
facial_clip_image = torch.stack(facial_clip_image, dim=1).squeeze(0)
facial_mask = torch.stack(facial_mask, dim=0).squeeze(dim=1)
return facial_clip_image, facial_mask
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
original_size: Optional[Tuple[int, int]] = None,
target_size: Optional[Tuple[int, int]] = None,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
input_id_images: PipelineImageInput = None,
start_merge_step: int = 0,
class_tokens_mask: Optional[torch.LongTensor] = None,
prompt_embeds_text_only: Optional[torch.FloatTensor] = None,
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
)
if not isinstance(input_id_images, list):
input_id_images = [input_id_images]
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
do_classifier_free_guidance = guidance_scale >= 1.0
input_image_file = input_id_images[0]
faceid_embeds = self.get_prepare_faceid(face_image=input_image_file)
face_caption = self.get_prepare_llva_caption(input_image_file)
key_parsing_mask_list, vis_parsing_anno_color = self.get_prepare_facemask(input_image_file)
assert do_classifier_free_guidance
# 3. Encode input prompt
num_id_images = len(input_id_images)
(
prompt_text_only,
clean_input_id,
key_parsing_mask_list_align,
facial_token_mask,
facial_token_idx,
facial_token_idx_mask,
) = self.encode_prompt_with_trigger_word(
prompt = prompt,
face_caption = face_caption,
# prompt_2=None,
key_parsing_mask_list=key_parsing_mask_list,
device=device,
max_num_facials = 5,
num_id_images= num_id_images,
# prompt_embeds= None,
# pooled_prompt_embeds= None,
# class_tokens_mask= None,
)
# 4. Encode input prompt without the trigger word for delayed conditioning
encoder_hidden_states = self.text_encoder(clean_input_id.to(device))[0]
prompt_embeds = self._encode_prompt(
prompt_text_only,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
negative_encoder_hidden_states_text_only = prompt_embeds[0:num_images_per_prompt]
encoder_hidden_states_text_only = prompt_embeds[num_images_per_prompt:]
# 5. Prepare the input ID images
prompt_tokens_faceid, uncond_prompt_tokens_faceid = self.get_image_embeds(faceid_embeds, face_image=input_image_file, s_scale=1.0, shortcut=False)
facial_clip_image, facial_mask = self.get_prepare_clip_image(input_image_file, key_parsing_mask_list_align, image_size=512, max_num_facials=5)
facial_clip_images = facial_clip_image.unsqueeze(0).to(device, dtype=self.torch_dtype)
facial_token_mask = facial_token_mask.to(device)
facial_token_idx_mask = facial_token_idx_mask.to(device)
negative_encoder_hidden_states = negative_encoder_hidden_states_text_only
cross_attention_kwargs = {}
# 6. Get the update text embedding
prompt_embeds_facial, uncond_prompt_embeds_facial = self.get_facial_embeds(encoder_hidden_states, negative_encoder_hidden_states, \
facial_clip_images, facial_token_mask, facial_token_idx_mask)
prompt_embeds = torch.cat([prompt_embeds_facial, prompt_tokens_faceid], dim=1)
negative_prompt_embeds = torch.cat([uncond_prompt_embeds_facial, uncond_prompt_tokens_faceid], dim=1)
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
prompt_embeds_text_only = torch.cat([encoder_hidden_states_text_only, prompt_tokens_faceid], dim=1)
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds_text_only], dim=0)
# 7. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 8. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
(
null_prompt_embeds,
augmented_prompt_embeds,
text_prompt_embeds,
) = prompt_embeds.chunk(3)
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if i <= start_merge_step:
current_prompt_embeds = torch.cat(
[null_prompt_embeds, text_prompt_embeds], dim=0
)
else:
current_prompt_embeds = torch.cat(
[null_prompt_embeds, augmented_prompt_embeds], dim=0
)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=current_prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
else:
assert 0, "Not Implemented"
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
# 9.1 Post-processing
image = self.decode_latents(latents)
# 9.2 Run safety checker
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype
)
# 9.3 Convert to PIL
image = self.numpy_to_pil(image)
else:
# 9.1 Post-processing
image = self.decode_latents(latents)
# 9.2 Run safety checker
image, has_nsfw_concept = self.run_safety_checker(
image, device, prompt_embeds.dtype
)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(
images=image, nsfw_content_detected=has_nsfw_concept
)