File size: 3,442 Bytes
d347764
 
 
 
77862e1
d347764
 
 
 
77862e1
 
 
 
1aa084a
91325a6
77862e1
4b94ac2
 
 
 
 
 
 
d347764
 
4b94ac2
77862e1
4b94ac2
77862e1
 
4b94ac2
77862e1
d347764
77862e1
 
 
d347764
77862e1
 
d347764
 
 
77862e1
 
 
4b94ac2
 
 
77862e1
4b94ac2
 
 
 
 
 
d347764
 
 
77862e1
 
 
 
 
a224cc4
4b94ac2
77862e1
 
 
 
 
 
d347764
 
 
 
77862e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d347764
 
4b94ac2
f805e49
47755f8
 
 
 
f805e49
 
 
77862e1
d347764
4b94ac2
1aa084a
c737803
 
1aa084a
 
 
c737803
 
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import numpy as np
import torch

from transformers import pipeline

device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-base",
    device=device,
    chunk_length_s=30,
    use_fast=True,
)
# load text translation checkpoint
translation_pipe = pipeline(
    "translation",
    model="facebook/nllb-200-distilled-600M",
    use_fast=True,
    device=device,
)

# load text-to-speech checkpoint and speaker embeddings
tts_pipe = pipeline(
    "text-to-speech",
    model="JackismyShephard/speecht5_tts-finetuned-nst-da",
    use_fast=True,
    device=device,
    revision="5af228df418092b681cf31c31e413bdd2b5f9c8c",
)

speaker_embedding_path = "female_23_vestjylland.npy"
speaker_embedding = np.load(speaker_embedding_path)
speaker_embedding_tensor = torch.tensor(speaker_embedding).unsqueeze(0)

target_dtype = np.int16
max_range = np.iinfo(target_dtype).max


def translate(audio):
    outputs = asr_pipe(
        audio,
        batch_size=8,
        generate_kwargs={
            "task": "translate",
        },
    )
    translated_text = translation_pipe(
        outputs["text"],
        src_lang="eng_Latn",
        tgt_lang="dan_Latn",
    )[0]["translation_text"]
    return translated_text


def synthesise(text):
    if len(text.strip()) == 0:
        return (16000, np.zeros(0))

    text = replace_danish_letters(text)

    forward_params = {"speaker_embeddings": speaker_embedding_tensor}
    speech = tts_pipe(text, forward_params=forward_params)

    sr, audio = speech["sampling_rate"], speech["audio"]

    audio = (audio * max_range).astype(np.int16)

    return sr, audio


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    return synthesise(translated_text)


def replace_danish_letters(text):
    for src, dst in replacements:
        text = text.replace(src, dst)
    return text


replacements = [
    ("&", "og"),
    ("\r", " "),
    ("´", ""),
    ("\\", ""),
    ("¨", " "),
    ("Å", "AA"),
    ("Æ", "AE"),
    ("É", "E"),
    ("Ö", "OE"),
    ("Ø", "OE"),
    ("á", "a"),
    ("ä", "ae"),
    ("å", "aa"),
    ("è", "e"),
    ("î", "i"),
    ("ô", "oe"),
    ("ö", "oe"),
    ("ø", "oe"),
    ("ü", "y"),
]


title = "Speech to Danish Speech Translation"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Danish. Demo uses: 
1. OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech to english text translation
2. Facebook's [NLBB](https://huggingface.co/facebook/nllb-200-distilled-600M) model for english to danish text translation
3. JackismyShephard's [speecht5_tts-finetuned-nst-da](https://huggingface.co/JackismyShephard/speecht5_tts-finetuned-nst-da) model for danish speech synthesis
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(label="Input Speech", type="filepath"),
    outputs=gr.Audio(label="Translated Speech", type="numpy"),
    title=title,
    description=description,
    examples=[["./example.wav"]],
    cache_examples=True,
    allow_flagging="never",
)

demo.launch()