Spaces:
Running
Running
import gradio as gr | |
import zipfile | |
import os | |
import tempfile | |
import shutil | |
from infer.modules.train.preprocess import PreProcess, preprocess_trainset | |
from infer.modules.train.extract.extract_f0_rmvpe import FeatureInput | |
from zero import zero | |
def extract_audio_files(zip_file: str, target_dir: str) -> list[str]: | |
with zipfile.ZipFile(zip_file, "r") as zip_ref: | |
zip_ref.extractall(target_dir) | |
audio_files = [ | |
os.path.join(target_dir, f) | |
for f in os.listdir(target_dir) | |
if f.endswith((".wav", ".mp3", ".ogg")) | |
] | |
if not audio_files: | |
raise gr.Error("No audio files found at the top level of the zip file") | |
return audio_files | |
def train_rvc_model(audio_files: list[str]) -> str: | |
return "model_path" | |
def preprocess(zip_file: str) -> str: | |
temp_dir = tempfile.mkdtemp() | |
print(f"Using exp dir: {temp_dir}") | |
data_dir = os.path.join(temp_dir, "_data") | |
os.makedirs(data_dir) | |
audio_files = extract_audio_files(zip_file, data_dir) | |
pp = PreProcess(48000, temp_dir, 3.0, False) | |
pp.pipeline_mp_inp_dir(data_dir, 4) | |
pp.logfile.seek(0) | |
log = pp.logfile.read() | |
return temp_dir, f"Preprocessed {len(audio_files)} audio files.\n{log}" | |
def download_expdir(exp_dir: str) -> str: | |
shutil.make_archive(exp_dir, "zip", exp_dir) | |
return f"{exp_dir}.zip" | |
def extract_features(exp_dir: str) -> str: | |
err = None | |
fi = FeatureInput(exp_dir) | |
try: | |
fi.run() | |
except Exception as e: | |
err = e | |
fi.logfile.seek(0) | |
log = fi.logfile.read() | |
if err: | |
log = f"Error: {err}\n{log}" | |
return log | |
with gr.Blocks() as app: | |
with gr.Row(): | |
with gr.Column(): | |
zip_file = gr.File( | |
label="Upload a zip file containing audio files for training", | |
file_types=["zip"], | |
) | |
exp_dir = gr.Textbox(label="Experiment directory", visible=True) | |
preprocess_btn = gr.Button(value="Preprocess", variant="primary") | |
with gr.Column(): | |
preprocess_output = gr.Textbox(label="Preprocessing output", lines=5) | |
with gr.Row(): | |
with gr.Column(): | |
extract_features_btn = gr.Button( | |
value="Extract features", variant="primary" | |
) | |
with gr.Column(): | |
extract_features_output = gr.Textbox( | |
label="Feature extraction output", lines=5 | |
) | |
with gr.Row(): | |
with gr.Column(): | |
download_expdir_btn = gr.Button( | |
value="Download experiment directory", variant="primary" | |
) | |
with gr.Column(): | |
download_expdir_output = gr.File(label="Download experiment directory") | |
preprocess_btn.click( | |
fn=preprocess, | |
inputs=[zip_file], | |
outputs=[exp_dir, preprocess_output], | |
) | |
extract_features_btn.click( | |
fn=extract_features, | |
inputs=[exp_dir], | |
outputs=[extract_features_output], | |
) | |
download_expdir_btn.click( | |
fn=download_expdir, | |
inputs=[exp_dir], | |
outputs=[download_expdir_output], | |
) | |
app.launch() | |