JacobLinCool's picture
move from rvc webui
645c216
raw
history blame
21.4 kB
import hashlib
import json
import math
import os
import librosa
import numpy as np
import soundfile as sf
from tqdm import tqdm
def crop_center(h1, h2):
h1_shape = h1.size()
h2_shape = h2.size()
if h1_shape[3] == h2_shape[3]:
return h1
elif h1_shape[3] < h2_shape[3]:
raise ValueError("h1_shape[3] must be greater than h2_shape[3]")
# s_freq = (h2_shape[2] - h1_shape[2]) // 2
# e_freq = s_freq + h1_shape[2]
s_time = (h1_shape[3] - h2_shape[3]) // 2
e_time = s_time + h2_shape[3]
h1 = h1[:, :, :, s_time:e_time]
return h1
def wave_to_spectrogram(
wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False
):
if reverse:
wave_left = np.flip(np.asfortranarray(wave[0]))
wave_right = np.flip(np.asfortranarray(wave[1]))
elif mid_side:
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
elif mid_side_b2:
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * 0.5))
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * 0.5))
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def wave_to_spectrogram_mt(
wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False
):
import threading
if reverse:
wave_left = np.flip(np.asfortranarray(wave[0]))
wave_right = np.flip(np.asfortranarray(wave[1]))
elif mid_side:
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
elif mid_side_b2:
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * 0.5))
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * 0.5))
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
def run_thread(**kwargs):
global spec_left
spec_left = librosa.stft(**kwargs)
thread = threading.Thread(
target=run_thread,
kwargs={"y": wave_left, "n_fft": n_fft, "hop_length": hop_length},
)
thread.start()
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
thread.join()
spec = np.asfortranarray([spec_left, spec_right])
return spec
def combine_spectrograms(specs, mp):
l = min([specs[i].shape[2] for i in specs])
spec_c = np.zeros(shape=(2, mp.param["bins"] + 1, l), dtype=np.complex64)
offset = 0
bands_n = len(mp.param["band"])
for d in range(1, bands_n + 1):
h = mp.param["band"][d]["crop_stop"] - mp.param["band"][d]["crop_start"]
spec_c[:, offset : offset + h, :l] = specs[d][
:, mp.param["band"][d]["crop_start"] : mp.param["band"][d]["crop_stop"], :l
]
offset += h
if offset > mp.param["bins"]:
raise ValueError("Too much bins")
# lowpass fiter
if (
mp.param["pre_filter_start"] > 0
): # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:
if bands_n == 1:
spec_c = fft_lp_filter(
spec_c, mp.param["pre_filter_start"], mp.param["pre_filter_stop"]
)
else:
gp = 1
for b in range(
mp.param["pre_filter_start"] + 1, mp.param["pre_filter_stop"]
):
g = math.pow(
10, -(b - mp.param["pre_filter_start"]) * (3.5 - gp) / 20.0
)
gp = g
spec_c[:, b, :] *= g
return np.asfortranarray(spec_c)
def spectrogram_to_image(spec, mode="magnitude"):
if mode == "magnitude":
if np.iscomplexobj(spec):
y = np.abs(spec)
else:
y = spec
y = np.log10(y**2 + 1e-8)
elif mode == "phase":
if np.iscomplexobj(spec):
y = np.angle(spec)
else:
y = spec
y -= y.min()
y *= 255 / y.max()
img = np.uint8(y)
if y.ndim == 3:
img = img.transpose(1, 2, 0)
img = np.concatenate([np.max(img, axis=2, keepdims=True), img], axis=2)
return img
def reduce_vocal_aggressively(X, y, softmask):
v = X - y
y_mag_tmp = np.abs(y)
v_mag_tmp = np.abs(v)
v_mask = v_mag_tmp > y_mag_tmp
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
return y_mag * np.exp(1.0j * np.angle(y))
def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32):
if min_range < fade_size * 2:
raise ValueError("min_range must be >= fade_area * 2")
mag = mag.copy()
idx = np.where(ref.mean(axis=(0, 1)) < thres)[0]
starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
uninformative = np.where(ends - starts > min_range)[0]
if len(uninformative) > 0:
starts = starts[uninformative]
ends = ends[uninformative]
old_e = None
for s, e in zip(starts, ends):
if old_e is not None and s - old_e < fade_size:
s = old_e - fade_size * 2
if s != 0:
weight = np.linspace(0, 1, fade_size)
mag[:, :, s : s + fade_size] += weight * ref[:, :, s : s + fade_size]
else:
s -= fade_size
if e != mag.shape[2]:
weight = np.linspace(1, 0, fade_size)
mag[:, :, e - fade_size : e] += weight * ref[:, :, e - fade_size : e]
else:
e += fade_size
mag[:, :, s + fade_size : e - fade_size] += ref[
:, :, s + fade_size : e - fade_size
]
old_e = e
return mag
def align_wave_head_and_tail(a, b):
l = min([a[0].size, b[0].size])
return a[:l, :l], b[:l, :l]
def cache_or_load(mix_path, inst_path, mp):
mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
inst_basename = os.path.splitext(os.path.basename(inst_path))[0]
cache_dir = "mph{}".format(
hashlib.sha1(json.dumps(mp.param, sort_keys=True).encode("utf-8")).hexdigest()
)
mix_cache_dir = os.path.join("cache", cache_dir)
inst_cache_dir = os.path.join("cache", cache_dir)
os.makedirs(mix_cache_dir, exist_ok=True)
os.makedirs(inst_cache_dir, exist_ok=True)
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + ".npy")
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + ".npy")
if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path):
X_spec_m = np.load(mix_cache_path)
y_spec_m = np.load(inst_cache_path)
else:
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
for d in range(len(mp.param["band"]), 0, -1):
bp = mp.param["band"][d]
if d == len(mp.param["band"]): # high-end band
X_wave[d], _ = librosa.load(
mix_path, bp["sr"], False, dtype=np.float32, res_type=bp["res_type"]
)
y_wave[d], _ = librosa.load(
inst_path,
bp["sr"],
False,
dtype=np.float32,
res_type=bp["res_type"],
)
else: # lower bands
X_wave[d] = librosa.resample(
X_wave[d + 1],
mp.param["band"][d + 1]["sr"],
bp["sr"],
res_type=bp["res_type"],
)
y_wave[d] = librosa.resample(
y_wave[d + 1],
mp.param["band"][d + 1]["sr"],
bp["sr"],
res_type=bp["res_type"],
)
X_wave[d], y_wave[d] = align_wave_head_and_tail(X_wave[d], y_wave[d])
X_spec_s[d] = wave_to_spectrogram(
X_wave[d],
bp["hl"],
bp["n_fft"],
mp.param["mid_side"],
mp.param["mid_side_b2"],
mp.param["reverse"],
)
y_spec_s[d] = wave_to_spectrogram(
y_wave[d],
bp["hl"],
bp["n_fft"],
mp.param["mid_side"],
mp.param["mid_side_b2"],
mp.param["reverse"],
)
del X_wave, y_wave
X_spec_m = combine_spectrograms(X_spec_s, mp)
y_spec_m = combine_spectrograms(y_spec_s, mp)
if X_spec_m.shape != y_spec_m.shape:
raise ValueError("The combined spectrograms are different: " + mix_path)
_, ext = os.path.splitext(mix_path)
np.save(mix_cache_path, X_spec_m)
np.save(inst_cache_path, y_spec_m)
return X_spec_m, y_spec_m
def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
if reverse:
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
elif mid_side:
return np.asfortranarray(
[np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]
)
elif mid_side_b2:
return np.asfortranarray(
[
np.add(wave_right / 1.25, 0.4 * wave_left),
np.subtract(wave_left / 1.25, 0.4 * wave_right),
]
)
else:
return np.asfortranarray([wave_left, wave_right])
def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2):
import threading
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
def run_thread(**kwargs):
global wave_left
wave_left = librosa.istft(**kwargs)
thread = threading.Thread(
target=run_thread, kwargs={"stft_matrix": spec_left, "hop_length": hop_length}
)
thread.start()
wave_right = librosa.istft(spec_right, hop_length=hop_length)
thread.join()
if reverse:
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
elif mid_side:
return np.asfortranarray(
[np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)]
)
elif mid_side_b2:
return np.asfortranarray(
[
np.add(wave_right / 1.25, 0.4 * wave_left),
np.subtract(wave_left / 1.25, 0.4 * wave_right),
]
)
else:
return np.asfortranarray([wave_left, wave_right])
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
wave_band = {}
bands_n = len(mp.param["band"])
offset = 0
for d in range(1, bands_n + 1):
bp = mp.param["band"][d]
spec_s = np.ndarray(
shape=(2, bp["n_fft"] // 2 + 1, spec_m.shape[2]), dtype=complex
)
h = bp["crop_stop"] - bp["crop_start"]
spec_s[:, bp["crop_start"] : bp["crop_stop"], :] = spec_m[
:, offset : offset + h, :
]
offset += h
if d == bands_n: # higher
if extra_bins_h: # if --high_end_process bypass
max_bin = bp["n_fft"] // 2
spec_s[:, max_bin - extra_bins_h : max_bin, :] = extra_bins[
:, :extra_bins_h, :
]
if bp["hpf_start"] > 0:
spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
if bands_n == 1:
wave = spectrogram_to_wave(
spec_s,
bp["hl"],
mp.param["mid_side"],
mp.param["mid_side_b2"],
mp.param["reverse"],
)
else:
wave = np.add(
wave,
spectrogram_to_wave(
spec_s,
bp["hl"],
mp.param["mid_side"],
mp.param["mid_side_b2"],
mp.param["reverse"],
),
)
else:
sr = mp.param["band"][d + 1]["sr"]
if d == 1: # lower
spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])
wave = librosa.resample(
spectrogram_to_wave(
spec_s,
bp["hl"],
mp.param["mid_side"],
mp.param["mid_side_b2"],
mp.param["reverse"],
),
bp["sr"],
sr,
res_type="sinc_fastest",
)
else: # mid
spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])
wave2 = np.add(
wave,
spectrogram_to_wave(
spec_s,
bp["hl"],
mp.param["mid_side"],
mp.param["mid_side_b2"],
mp.param["reverse"],
),
)
# wave = librosa.core.resample(wave2, bp['sr'], sr, res_type="sinc_fastest")
wave = librosa.core.resample(wave2, bp["sr"], sr, res_type="scipy")
return wave.T
def fft_lp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop):
g -= 1 / (bin_stop - bin_start)
spec[:, b, :] = g * spec[:, b, :]
spec[:, bin_stop:, :] *= 0
return spec
def fft_hp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop, -1):
g -= 1 / (bin_start - bin_stop)
spec[:, b, :] = g * spec[:, b, :]
spec[:, 0 : bin_stop + 1, :] *= 0
return spec
def mirroring(a, spec_m, input_high_end, mp):
if "mirroring" == a:
mirror = np.flip(
np.abs(
spec_m[
:,
mp.param["pre_filter_start"]
- 10
- input_high_end.shape[1] : mp.param["pre_filter_start"]
- 10,
:,
]
),
1,
)
mirror = mirror * np.exp(1.0j * np.angle(input_high_end))
return np.where(
np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror
)
if "mirroring2" == a:
mirror = np.flip(
np.abs(
spec_m[
:,
mp.param["pre_filter_start"]
- 10
- input_high_end.shape[1] : mp.param["pre_filter_start"]
- 10,
:,
]
),
1,
)
mi = np.multiply(mirror, input_high_end * 1.7)
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
def ensembling(a, specs):
for i in range(1, len(specs)):
if i == 1:
spec = specs[0]
ln = min([spec.shape[2], specs[i].shape[2]])
spec = spec[:, :, :ln]
specs[i] = specs[i][:, :, :ln]
if "min_mag" == a:
spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec)
if "max_mag" == a:
spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec)
return spec
def stft(wave, nfft, hl):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def istft(spec, hl):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hl)
wave_right = librosa.istft(spec_right, hop_length=hl)
wave = np.asfortranarray([wave_left, wave_right])
if __name__ == "__main__":
import argparse
import sys
import time
import cv2
from model_param_init import ModelParameters
p = argparse.ArgumentParser()
p.add_argument(
"--algorithm",
"-a",
type=str,
choices=["invert", "invert_p", "min_mag", "max_mag", "deep", "align"],
default="min_mag",
)
p.add_argument(
"--model_params",
"-m",
type=str,
default=os.path.join("modelparams", "1band_sr44100_hl512.json"),
)
p.add_argument("--output_name", "-o", type=str, default="output")
p.add_argument("--vocals_only", "-v", action="store_true")
p.add_argument("input", nargs="+")
args = p.parse_args()
start_time = time.time()
if args.algorithm.startswith("invert") and len(args.input) != 2:
raise ValueError("There should be two input files.")
if not args.algorithm.startswith("invert") and len(args.input) < 2:
raise ValueError("There must be at least two input files.")
wave, specs = {}, {}
mp = ModelParameters(args.model_params)
for i in range(len(args.input)):
spec = {}
for d in range(len(mp.param["band"]), 0, -1):
bp = mp.param["band"][d]
if d == len(mp.param["band"]): # high-end band
wave[d], _ = librosa.load(
args.input[i],
bp["sr"],
False,
dtype=np.float32,
res_type=bp["res_type"],
)
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(
wave[d + 1],
mp.param["band"][d + 1]["sr"],
bp["sr"],
res_type=bp["res_type"],
)
spec[d] = wave_to_spectrogram(
wave[d],
bp["hl"],
bp["n_fft"],
mp.param["mid_side"],
mp.param["mid_side_b2"],
mp.param["reverse"],
)
specs[i] = combine_spectrograms(spec, mp)
del wave
if args.algorithm == "deep":
d_spec = np.where(np.abs(specs[0]) <= np.abs(spec[1]), specs[0], spec[1])
v_spec = d_spec - specs[1]
sf.write(
os.path.join("{}.wav".format(args.output_name)),
cmb_spectrogram_to_wave(v_spec, mp),
mp.param["sr"],
)
if args.algorithm.startswith("invert"):
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:, :, :ln]
specs[1] = specs[1][:, :, :ln]
if "invert_p" == args.algorithm:
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.0j * np.angle(specs[0]))
else:
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
v_spec = specs[0] - specs[1]
if not args.vocals_only:
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
v_mag = np.abs(v_spec)
X_image = spectrogram_to_image(X_mag)
y_image = spectrogram_to_image(y_mag)
v_image = spectrogram_to_image(v_mag)
cv2.imwrite("{}_X.png".format(args.output_name), X_image)
cv2.imwrite("{}_y.png".format(args.output_name), y_image)
cv2.imwrite("{}_v.png".format(args.output_name), v_image)
sf.write(
"{}_X.wav".format(args.output_name),
cmb_spectrogram_to_wave(specs[0], mp),
mp.param["sr"],
)
sf.write(
"{}_y.wav".format(args.output_name),
cmb_spectrogram_to_wave(specs[1], mp),
mp.param["sr"],
)
sf.write(
"{}_v.wav".format(args.output_name),
cmb_spectrogram_to_wave(v_spec, mp),
mp.param["sr"],
)
else:
if not args.algorithm == "deep":
sf.write(
os.path.join("ensembled", "{}.wav".format(args.output_name)),
cmb_spectrogram_to_wave(ensembling(args.algorithm, specs), mp),
mp.param["sr"],
)
if args.algorithm == "align":
trackalignment = [
{
"file1": '"{}"'.format(args.input[0]),
"file2": '"{}"'.format(args.input[1]),
}
]
for i, e in tqdm(enumerate(trackalignment), desc="Performing Alignment..."):
os.system(f"python lib/align_tracks.py {e['file1']} {e['file2']}")
# print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))