ZeroRVC / infer /modules /train /preprocess.py
JacobLinCool's picture
move from rvc webui
645c216
raw
history blame
4.6 kB
import multiprocessing
import os
import sys
from scipy import signal
import os
import traceback
import librosa
import numpy as np
from scipy.io import wavfile
from infer.lib.audio import load_audio
from infer.lib.slicer2 import Slicer
class PreProcess:
def __init__(self, sr, exp_dir, per=3.7, noparallel=False):
self.slicer = Slicer(
sr=sr,
threshold=-42,
min_length=1500,
min_interval=400,
hop_size=15,
max_sil_kept=500,
)
self.sr = sr
self.bh, self.ah = signal.butter(N=5, Wn=48, btype="high", fs=self.sr)
self.per = per
self.overlap = 0.3
self.tail = self.per + self.overlap
self.max = 0.9
self.alpha = 0.75
self.exp_dir = exp_dir
self.gt_wavs_dir = "%s/0_gt_wavs" % exp_dir
self.wavs16k_dir = "%s/1_16k_wavs" % exp_dir
self.logfile = open("%s/preprocess.log" % exp_dir, "a+")
self.noparallel = noparallel
os.makedirs(self.exp_dir, exist_ok=True)
os.makedirs(self.gt_wavs_dir, exist_ok=True)
os.makedirs(self.wavs16k_dir, exist_ok=True)
def println(self, strr):
print(strr)
self.logfile.write("%s\n" % strr)
self.logfile.flush()
def norm_write(self, tmp_audio, idx0, idx1):
tmp_max = np.abs(tmp_audio).max()
if tmp_max > 2.5:
print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
return
tmp_audio = (tmp_audio / tmp_max * (self.max * self.alpha)) + (
1 - self.alpha
) * tmp_audio
wavfile.write(
"%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1),
self.sr,
tmp_audio.astype(np.float32),
)
tmp_audio = librosa.resample(
tmp_audio, orig_sr=self.sr, target_sr=16000
) # , res_type="soxr_vhq"
wavfile.write(
"%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1),
16000,
tmp_audio.astype(np.float32),
)
def pipeline(self, path, idx0):
try:
audio = load_audio(path, self.sr)
# zero phased digital filter cause pre-ringing noise...
# audio = signal.filtfilt(self.bh, self.ah, audio)
audio = signal.lfilter(self.bh, self.ah, audio)
idx1 = 0
for audio in self.slicer.slice(audio):
i = 0
while 1:
start = int(self.sr * (self.per - self.overlap) * i)
i += 1
if len(audio[start:]) > self.tail * self.sr:
tmp_audio = audio[start : start + int(self.per * self.sr)]
self.norm_write(tmp_audio, idx0, idx1)
idx1 += 1
else:
tmp_audio = audio[start:]
idx1 += 1
break
self.norm_write(tmp_audio, idx0, idx1)
self.println("%s\t-> Success" % path)
except:
self.println("%s\t-> %s" % (path, traceback.format_exc()))
def pipeline_mp(self, infos):
for path, idx0 in infos:
self.pipeline(path, idx0)
def pipeline_mp_inp_dir(self, inp_root, n_p):
try:
infos = [
("%s/%s" % (inp_root, name), idx)
for idx, name in enumerate(sorted(list(os.listdir(inp_root))))
]
if self.noparallel:
for i in range(n_p):
self.pipeline_mp(infos[i::n_p])
else:
ps = []
for i in range(n_p):
p = multiprocessing.Process(
target=self.pipeline_mp, args=(infos[i::n_p],)
)
ps.append(p)
p.start()
for i in range(n_p):
ps[i].join()
except:
self.println("Fail. %s" % traceback.format_exc())
def preprocess_trainset(inp_root, sr, n_p, exp_dir, per, noparallel):
pp = PreProcess(sr, exp_dir, per, noparallel)
pp.println("start preprocess")
pp.pipeline_mp_inp_dir(inp_root, n_p)
pp.println("end preprocess")
if __name__ == "__main__":
now_dir = os.getcwd()
sys.path.append(now_dir)
print(*sys.argv[1:])
inp_root = sys.argv[1]
sr = int(sys.argv[2])
n_p = int(sys.argv[3])
exp_dir = sys.argv[4]
noparallel = sys.argv[5] == "True"
per = float(sys.argv[6])
preprocess_trainset(inp_root, sr, n_p, exp_dir, per, noparallel)