Spaces:
Running
Running
JacobLinCool
commited on
Commit
•
d07b6f4
1
Parent(s):
8fe2bf8
feat: training
Browse files- .gitattributes +1 -0
- app.py +133 -6
- config.json +79 -0
- infer-web.py +1265 -0
- infer/modules/train/train.py +62 -56
- logs/mute/0_gt_wavs/mute32k.wav +3 -0
- logs/mute/0_gt_wavs/mute40k.spec.pt +3 -0
- logs/mute/0_gt_wavs/mute40k.wav +3 -0
- logs/mute/0_gt_wavs/mute48k.wav +3 -0
- logs/mute/1_16k_wavs/mute.wav +3 -0
- logs/mute/2a_f0/mute.wav.npy +3 -0
- logs/mute/2b-f0nsf/mute.wav.npy +3 -0
- logs/mute/3_feature256/mute.npy +3 -0
- logs/mute/3_feature768/mute.npy +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,10 +1,14 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import zipfile
|
3 |
import os
|
4 |
import tempfile
|
5 |
import shutil
|
6 |
-
from
|
|
|
7 |
from infer.modules.train.extract.extract_f0_rmvpe import FeatureInput
|
|
|
|
|
8 |
from zero import zero
|
9 |
|
10 |
|
@@ -44,11 +48,6 @@ def preprocess(zip_file: str) -> str:
|
|
44 |
return temp_dir, f"Preprocessed {len(audio_files)} audio files.\n{log}"
|
45 |
|
46 |
|
47 |
-
def download_expdir(exp_dir: str) -> str:
|
48 |
-
shutil.make_archive(exp_dir, "zip", exp_dir)
|
49 |
-
return f"{exp_dir}.zip"
|
50 |
-
|
51 |
-
|
52 |
@zero(duration=120)
|
53 |
def extract_features(exp_dir: str) -> str:
|
54 |
err = None
|
@@ -67,6 +66,108 @@ def extract_features(exp_dir: str) -> str:
|
|
67 |
return log
|
68 |
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
with gr.Blocks() as app:
|
71 |
with gr.Row():
|
72 |
with gr.Column():
|
@@ -89,6 +190,20 @@ with gr.Blocks() as app:
|
|
89 |
label="Feature extraction output", lines=5
|
90 |
)
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
94 |
download_expdir_btn = gr.Button(
|
@@ -109,6 +224,18 @@ with gr.Blocks() as app:
|
|
109 |
outputs=[extract_features_output],
|
110 |
)
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
download_expdir_btn.click(
|
113 |
fn=download_expdir,
|
114 |
inputs=[exp_dir],
|
|
|
1 |
+
from random import shuffle
|
2 |
import gradio as gr
|
3 |
import zipfile
|
4 |
import os
|
5 |
import tempfile
|
6 |
import shutil
|
7 |
+
from glob import glob
|
8 |
+
from infer.modules.train.preprocess import PreProcess
|
9 |
from infer.modules.train.extract.extract_f0_rmvpe import FeatureInput
|
10 |
+
from infer.modules.train.train import train
|
11 |
+
from infer.lib.train.process_ckpt import extract_small_model
|
12 |
from zero import zero
|
13 |
|
14 |
|
|
|
48 |
return temp_dir, f"Preprocessed {len(audio_files)} audio files.\n{log}"
|
49 |
|
50 |
|
|
|
|
|
|
|
|
|
|
|
51 |
@zero(duration=120)
|
52 |
def extract_features(exp_dir: str) -> str:
|
53 |
err = None
|
|
|
66 |
return log
|
67 |
|
68 |
|
69 |
+
def write_filelist(exp_dir: str) -> None:
|
70 |
+
if_f0_3 = True
|
71 |
+
spk_id5 = 0
|
72 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
73 |
+
feature_dir = "%s/3_feature768" % (exp_dir)
|
74 |
+
|
75 |
+
if if_f0_3:
|
76 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
77 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
78 |
+
names = (
|
79 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
80 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
81 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
82 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
83 |
+
)
|
84 |
+
else:
|
85 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
86 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
87 |
+
)
|
88 |
+
opt = []
|
89 |
+
for name in names:
|
90 |
+
if if_f0_3:
|
91 |
+
opt.append(
|
92 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
93 |
+
% (
|
94 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
95 |
+
name,
|
96 |
+
feature_dir.replace("\\", "\\\\"),
|
97 |
+
name,
|
98 |
+
f0_dir.replace("\\", "\\\\"),
|
99 |
+
name,
|
100 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
101 |
+
name,
|
102 |
+
spk_id5,
|
103 |
+
)
|
104 |
+
)
|
105 |
+
else:
|
106 |
+
opt.append(
|
107 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
108 |
+
% (
|
109 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
110 |
+
name,
|
111 |
+
feature_dir.replace("\\", "\\\\"),
|
112 |
+
name,
|
113 |
+
spk_id5,
|
114 |
+
)
|
115 |
+
)
|
116 |
+
fea_dim = 768
|
117 |
+
|
118 |
+
now_dir = os.getcwd()
|
119 |
+
sr2 = "40k"
|
120 |
+
if if_f0_3:
|
121 |
+
for _ in range(2):
|
122 |
+
opt.append(
|
123 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
124 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
for _ in range(2):
|
128 |
+
opt.append(
|
129 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
130 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
131 |
+
)
|
132 |
+
shuffle(opt)
|
133 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
134 |
+
f.write("\n".join(opt))
|
135 |
+
|
136 |
+
|
137 |
+
@zero(duration=300)
|
138 |
+
def train_model(exp_dir: str) -> str:
|
139 |
+
shutil.copy("config.json", exp_dir)
|
140 |
+
write_filelist(exp_dir)
|
141 |
+
train(exp_dir)
|
142 |
+
|
143 |
+
models = glob(f"{exp_dir}/G_*.pth")
|
144 |
+
if not models:
|
145 |
+
raise gr.Error("No model found")
|
146 |
+
|
147 |
+
latest_model = max(models, key=os.path.getctime)
|
148 |
+
return latest_model
|
149 |
+
|
150 |
+
|
151 |
+
def download_weight(exp_dir: str) -> str:
|
152 |
+
models = glob(f"{exp_dir}/G_*.pth")
|
153 |
+
if not models:
|
154 |
+
raise gr.Error("No model found")
|
155 |
+
|
156 |
+
latest_model = max(models, key=os.path.getctime)
|
157 |
+
|
158 |
+
name = os.path.basename(exp_dir)
|
159 |
+
extract_small_model(
|
160 |
+
latest_model, name, "40k", True, "Model trained by ZeroGPU.", "v2"
|
161 |
+
)
|
162 |
+
|
163 |
+
return "assets/weights/%s.pth" % name
|
164 |
+
|
165 |
+
|
166 |
+
def download_expdir(exp_dir: str) -> str:
|
167 |
+
shutil.make_archive(exp_dir, "zip", exp_dir)
|
168 |
+
return f"{exp_dir}.zip"
|
169 |
+
|
170 |
+
|
171 |
with gr.Blocks() as app:
|
172 |
with gr.Row():
|
173 |
with gr.Column():
|
|
|
190 |
label="Feature extraction output", lines=5
|
191 |
)
|
192 |
|
193 |
+
with gr.Row():
|
194 |
+
with gr.Column():
|
195 |
+
train_btn = gr.Button(value="Train", variant="primary")
|
196 |
+
with gr.Column():
|
197 |
+
latest_model = gr.File(label="Latest model")
|
198 |
+
|
199 |
+
with gr.Row():
|
200 |
+
with gr.Column():
|
201 |
+
download_weight_btn = gr.Button(
|
202 |
+
value="Download latest model", variant="primary"
|
203 |
+
)
|
204 |
+
with gr.Column():
|
205 |
+
download_weight_output = gr.File(label="Download latest model")
|
206 |
+
|
207 |
with gr.Row():
|
208 |
with gr.Column():
|
209 |
download_expdir_btn = gr.Button(
|
|
|
224 |
outputs=[extract_features_output],
|
225 |
)
|
226 |
|
227 |
+
train_btn.click(
|
228 |
+
fn=train_model,
|
229 |
+
inputs=[exp_dir],
|
230 |
+
outputs=[latest_model],
|
231 |
+
)
|
232 |
+
|
233 |
+
download_weight_btn.click(
|
234 |
+
fn=download_weight,
|
235 |
+
inputs=[exp_dir],
|
236 |
+
outputs=[download_weight_output],
|
237 |
+
)
|
238 |
+
|
239 |
download_expdir_btn.click(
|
240 |
fn=download_expdir,
|
241 |
inputs=[exp_dir],
|
config.json
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"data": {
|
3 |
+
"filter_length": 2048,
|
4 |
+
"hop_length": 400,
|
5 |
+
"max_wav_value": 32768.0,
|
6 |
+
"mel_fmax": null,
|
7 |
+
"mel_fmin": 0.0,
|
8 |
+
"n_mel_channels": 125,
|
9 |
+
"sampling_rate": 40000,
|
10 |
+
"win_length": 2048
|
11 |
+
},
|
12 |
+
"model": {
|
13 |
+
"filter_channels": 768,
|
14 |
+
"gin_channels": 256,
|
15 |
+
"hidden_channels": 192,
|
16 |
+
"inter_channels": 192,
|
17 |
+
"kernel_size": 3,
|
18 |
+
"n_heads": 2,
|
19 |
+
"n_layers": 6,
|
20 |
+
"p_dropout": 0,
|
21 |
+
"resblock": "1",
|
22 |
+
"resblock_dilation_sizes": [
|
23 |
+
[
|
24 |
+
1,
|
25 |
+
3,
|
26 |
+
5
|
27 |
+
],
|
28 |
+
[
|
29 |
+
1,
|
30 |
+
3,
|
31 |
+
5
|
32 |
+
],
|
33 |
+
[
|
34 |
+
1,
|
35 |
+
3,
|
36 |
+
5
|
37 |
+
]
|
38 |
+
],
|
39 |
+
"resblock_kernel_sizes": [
|
40 |
+
3,
|
41 |
+
7,
|
42 |
+
11
|
43 |
+
],
|
44 |
+
"spk_embed_dim": 109,
|
45 |
+
"upsample_initial_channel": 512,
|
46 |
+
"upsample_kernel_sizes": [
|
47 |
+
16,
|
48 |
+
16,
|
49 |
+
4,
|
50 |
+
4
|
51 |
+
],
|
52 |
+
"upsample_rates": [
|
53 |
+
10,
|
54 |
+
10,
|
55 |
+
2,
|
56 |
+
2
|
57 |
+
],
|
58 |
+
"use_spectral_norm": false
|
59 |
+
},
|
60 |
+
"train": {
|
61 |
+
"batch_size": 4,
|
62 |
+
"betas": [
|
63 |
+
0.8,
|
64 |
+
0.99
|
65 |
+
],
|
66 |
+
"c_kl": 1.0,
|
67 |
+
"c_mel": 45,
|
68 |
+
"epochs": 20000,
|
69 |
+
"eps": 1e-09,
|
70 |
+
"fp16_run": false,
|
71 |
+
"init_lr_ratio": 1,
|
72 |
+
"learning_rate": 0.0001,
|
73 |
+
"log_interval": 200,
|
74 |
+
"lr_decay": 0.999875,
|
75 |
+
"seed": 1234,
|
76 |
+
"segment_size": 12800,
|
77 |
+
"warmup_epochs": 0
|
78 |
+
}
|
79 |
+
}
|
infer-web.py
ADDED
@@ -0,0 +1,1265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
|
5 |
+
now_dir = os.getcwd()
|
6 |
+
sys.path.append(now_dir)
|
7 |
+
load_dotenv()
|
8 |
+
from infer.modules.vc.modules import VC
|
9 |
+
from infer.modules.uvr5.modules import uvr
|
10 |
+
from infer.lib.train.process_ckpt import (
|
11 |
+
change_info,
|
12 |
+
extract_small_model,
|
13 |
+
merge,
|
14 |
+
show_info,
|
15 |
+
)
|
16 |
+
from i18n.i18n import I18nAuto
|
17 |
+
from configs.config import Config
|
18 |
+
from sklearn.cluster import MiniBatchKMeans
|
19 |
+
import torch, platform
|
20 |
+
import numpy as np
|
21 |
+
import gradio as gr
|
22 |
+
import faiss
|
23 |
+
import fairseq
|
24 |
+
import pathlib
|
25 |
+
import json
|
26 |
+
from time import sleep
|
27 |
+
from subprocess import Popen
|
28 |
+
from random import shuffle
|
29 |
+
import warnings
|
30 |
+
import traceback
|
31 |
+
import threading
|
32 |
+
import shutil
|
33 |
+
import logging
|
34 |
+
|
35 |
+
|
36 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
37 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
38 |
+
|
39 |
+
logger = logging.getLogger(__name__)
|
40 |
+
|
41 |
+
tmp = os.path.join(now_dir, "TEMP")
|
42 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
43 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
44 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
45 |
+
os.makedirs(tmp, exist_ok=True)
|
46 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
47 |
+
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
|
48 |
+
os.environ["TEMP"] = tmp
|
49 |
+
warnings.filterwarnings("ignore")
|
50 |
+
torch.manual_seed(114514)
|
51 |
+
|
52 |
+
|
53 |
+
config = Config()
|
54 |
+
vc = VC(config)
|
55 |
+
|
56 |
+
|
57 |
+
if config.dml == True:
|
58 |
+
|
59 |
+
def forward_dml(ctx, x, scale):
|
60 |
+
ctx.scale = scale
|
61 |
+
res = x.clone().detach()
|
62 |
+
return res
|
63 |
+
|
64 |
+
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
65 |
+
i18n = I18nAuto()
|
66 |
+
logger.info(i18n)
|
67 |
+
# 判断是否有能用来训练和加速推理的N卡
|
68 |
+
ngpu = torch.cuda.device_count()
|
69 |
+
gpu_infos = []
|
70 |
+
mem = []
|
71 |
+
if_gpu_ok = False
|
72 |
+
|
73 |
+
if torch.cuda.is_available() or ngpu != 0:
|
74 |
+
for i in range(ngpu):
|
75 |
+
gpu_name = torch.cuda.get_device_name(i)
|
76 |
+
if any(
|
77 |
+
value in gpu_name.upper()
|
78 |
+
for value in [
|
79 |
+
"10",
|
80 |
+
"16",
|
81 |
+
"20",
|
82 |
+
"30",
|
83 |
+
"40",
|
84 |
+
"A2",
|
85 |
+
"A3",
|
86 |
+
"A4",
|
87 |
+
"P4",
|
88 |
+
"A50",
|
89 |
+
"500",
|
90 |
+
"A60",
|
91 |
+
"70",
|
92 |
+
"80",
|
93 |
+
"90",
|
94 |
+
"M4",
|
95 |
+
"T4",
|
96 |
+
"TITAN",
|
97 |
+
"4060",
|
98 |
+
"L",
|
99 |
+
"6000",
|
100 |
+
]
|
101 |
+
):
|
102 |
+
# A10#A100#V100#A40#P40#M40#K80#A4500
|
103 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
104 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
105 |
+
mem.append(
|
106 |
+
int(
|
107 |
+
torch.cuda.get_device_properties(i).total_memory
|
108 |
+
/ 1024
|
109 |
+
/ 1024
|
110 |
+
/ 1024
|
111 |
+
+ 0.4
|
112 |
+
)
|
113 |
+
)
|
114 |
+
if if_gpu_ok and len(gpu_infos) > 0:
|
115 |
+
gpu_info = "\n".join(gpu_infos)
|
116 |
+
default_batch_size = min(mem) // 2
|
117 |
+
else:
|
118 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
119 |
+
default_batch_size = 1
|
120 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
121 |
+
|
122 |
+
|
123 |
+
class ToolButton(gr.Button, gr.components.FormComponent):
|
124 |
+
"""Small button with single emoji as text, fits inside gradio forms"""
|
125 |
+
|
126 |
+
def __init__(self, **kwargs):
|
127 |
+
super().__init__(variant="tool", **kwargs)
|
128 |
+
|
129 |
+
def get_block_name(self):
|
130 |
+
return "button"
|
131 |
+
|
132 |
+
|
133 |
+
weight_root = os.getenv("weight_root")
|
134 |
+
weight_uvr5_root = os.getenv("weight_uvr5_root")
|
135 |
+
index_root = os.getenv("index_root")
|
136 |
+
outside_index_root = os.getenv("outside_index_root")
|
137 |
+
|
138 |
+
names = []
|
139 |
+
for name in os.listdir(weight_root):
|
140 |
+
if name.endswith(".pth"):
|
141 |
+
names.append(name)
|
142 |
+
index_paths = []
|
143 |
+
|
144 |
+
|
145 |
+
def lookup_indices(index_root):
|
146 |
+
global index_paths
|
147 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
148 |
+
for name in files:
|
149 |
+
if name.endswith(".index") and "trained" not in name:
|
150 |
+
index_paths.append("%s/%s" % (root, name))
|
151 |
+
|
152 |
+
|
153 |
+
lookup_indices(index_root)
|
154 |
+
lookup_indices(outside_index_root)
|
155 |
+
uvr5_names = []
|
156 |
+
for name in os.listdir(weight_uvr5_root):
|
157 |
+
if name.endswith(".pth") or "onnx" in name:
|
158 |
+
uvr5_names.append(name.replace(".pth", ""))
|
159 |
+
|
160 |
+
|
161 |
+
def change_choices():
|
162 |
+
names = []
|
163 |
+
for name in os.listdir(weight_root):
|
164 |
+
if name.endswith(".pth"):
|
165 |
+
names.append(name)
|
166 |
+
index_paths = []
|
167 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
168 |
+
for name in files:
|
169 |
+
if name.endswith(".index") and "trained" not in name:
|
170 |
+
index_paths.append("%s/%s" % (root, name))
|
171 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
172 |
+
"choices": sorted(index_paths),
|
173 |
+
"__type__": "update",
|
174 |
+
}
|
175 |
+
|
176 |
+
|
177 |
+
def clean():
|
178 |
+
return {"value": "", "__type__": "update"}
|
179 |
+
|
180 |
+
|
181 |
+
def export_onnx(ModelPath, ExportedPath):
|
182 |
+
from infer.modules.onnx.export import export_onnx as eo
|
183 |
+
|
184 |
+
eo(ModelPath, ExportedPath)
|
185 |
+
|
186 |
+
|
187 |
+
sr_dict = {
|
188 |
+
"32k": 32000,
|
189 |
+
"40k": 40000,
|
190 |
+
"48k": 48000,
|
191 |
+
}
|
192 |
+
|
193 |
+
|
194 |
+
def if_done(done, p):
|
195 |
+
while 1:
|
196 |
+
if p.poll() is None:
|
197 |
+
sleep(0.5)
|
198 |
+
else:
|
199 |
+
break
|
200 |
+
done[0] = True
|
201 |
+
|
202 |
+
|
203 |
+
def if_done_multi(done, ps):
|
204 |
+
while 1:
|
205 |
+
# poll==None代表进程未结束
|
206 |
+
# 只要有一个进程未结束都不停
|
207 |
+
flag = 1
|
208 |
+
for p in ps:
|
209 |
+
if p.poll() is None:
|
210 |
+
flag = 0
|
211 |
+
sleep(0.5)
|
212 |
+
break
|
213 |
+
if flag == 1:
|
214 |
+
break
|
215 |
+
done[0] = True
|
216 |
+
|
217 |
+
|
218 |
+
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
219 |
+
sr = sr_dict[sr]
|
220 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
221 |
+
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
222 |
+
f.close()
|
223 |
+
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
|
224 |
+
config.python_cmd,
|
225 |
+
trainset_dir,
|
226 |
+
sr,
|
227 |
+
n_p,
|
228 |
+
now_dir,
|
229 |
+
exp_dir,
|
230 |
+
config.noparallel,
|
231 |
+
config.preprocess_per,
|
232 |
+
)
|
233 |
+
logger.info("Execute: " + cmd)
|
234 |
+
# , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
235 |
+
p = Popen(cmd, shell=True)
|
236 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
237 |
+
done = [False]
|
238 |
+
threading.Thread(
|
239 |
+
target=if_done,
|
240 |
+
args=(
|
241 |
+
done,
|
242 |
+
p,
|
243 |
+
),
|
244 |
+
).start()
|
245 |
+
while 1:
|
246 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
247 |
+
yield (f.read())
|
248 |
+
sleep(1)
|
249 |
+
if done[0]:
|
250 |
+
break
|
251 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
252 |
+
log = f.read()
|
253 |
+
logger.info(log)
|
254 |
+
yield log
|
255 |
+
|
256 |
+
|
257 |
+
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
258 |
+
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
|
259 |
+
gpus = gpus.split("-")
|
260 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
261 |
+
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
262 |
+
f.close()
|
263 |
+
if if_f0:
|
264 |
+
if f0method != "rmvpe_gpu":
|
265 |
+
cmd = (
|
266 |
+
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
|
267 |
+
% (
|
268 |
+
config.python_cmd,
|
269 |
+
now_dir,
|
270 |
+
exp_dir,
|
271 |
+
n_p,
|
272 |
+
f0method,
|
273 |
+
)
|
274 |
+
)
|
275 |
+
logger.info("Execute: " + cmd)
|
276 |
+
p = Popen(
|
277 |
+
cmd, shell=True, cwd=now_dir
|
278 |
+
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
279 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
280 |
+
done = [False]
|
281 |
+
threading.Thread(
|
282 |
+
target=if_done,
|
283 |
+
args=(
|
284 |
+
done,
|
285 |
+
p,
|
286 |
+
),
|
287 |
+
).start()
|
288 |
+
else:
|
289 |
+
if gpus_rmvpe != "-":
|
290 |
+
gpus_rmvpe = gpus_rmvpe.split("-")
|
291 |
+
leng = len(gpus_rmvpe)
|
292 |
+
ps = []
|
293 |
+
for idx, n_g in enumerate(gpus_rmvpe):
|
294 |
+
cmd = (
|
295 |
+
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
|
296 |
+
% (
|
297 |
+
config.python_cmd,
|
298 |
+
leng,
|
299 |
+
idx,
|
300 |
+
n_g,
|
301 |
+
now_dir,
|
302 |
+
exp_dir,
|
303 |
+
config.is_half,
|
304 |
+
)
|
305 |
+
)
|
306 |
+
logger.info("Execute: " + cmd)
|
307 |
+
p = Popen(
|
308 |
+
cmd, shell=True, cwd=now_dir
|
309 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
310 |
+
ps.append(p)
|
311 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
312 |
+
done = [False]
|
313 |
+
threading.Thread(
|
314 |
+
target=if_done_multi, #
|
315 |
+
args=(
|
316 |
+
done,
|
317 |
+
ps,
|
318 |
+
),
|
319 |
+
).start()
|
320 |
+
else:
|
321 |
+
cmd = (
|
322 |
+
config.python_cmd
|
323 |
+
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
|
324 |
+
% (
|
325 |
+
now_dir,
|
326 |
+
exp_dir,
|
327 |
+
)
|
328 |
+
)
|
329 |
+
logger.info("Execute: " + cmd)
|
330 |
+
p = Popen(
|
331 |
+
cmd, shell=True, cwd=now_dir
|
332 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
333 |
+
p.wait()
|
334 |
+
done = [True]
|
335 |
+
while 1:
|
336 |
+
with open(
|
337 |
+
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
338 |
+
) as f:
|
339 |
+
yield (f.read())
|
340 |
+
sleep(1)
|
341 |
+
if done[0]:
|
342 |
+
break
|
343 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
344 |
+
log = f.read()
|
345 |
+
logger.info(log)
|
346 |
+
yield log
|
347 |
+
# 对不同part分别开多进程
|
348 |
+
"""
|
349 |
+
n_part=int(sys.argv[1])
|
350 |
+
i_part=int(sys.argv[2])
|
351 |
+
i_gpu=sys.argv[3]
|
352 |
+
exp_dir=sys.argv[4]
|
353 |
+
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
354 |
+
"""
|
355 |
+
leng = len(gpus)
|
356 |
+
ps = []
|
357 |
+
for idx, n_g in enumerate(gpus):
|
358 |
+
cmd = (
|
359 |
+
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s %s'
|
360 |
+
% (
|
361 |
+
config.python_cmd,
|
362 |
+
config.device,
|
363 |
+
leng,
|
364 |
+
idx,
|
365 |
+
n_g,
|
366 |
+
now_dir,
|
367 |
+
exp_dir,
|
368 |
+
version19,
|
369 |
+
config.is_half,
|
370 |
+
)
|
371 |
+
)
|
372 |
+
logger.info("Execute: " + cmd)
|
373 |
+
p = Popen(
|
374 |
+
cmd, shell=True, cwd=now_dir
|
375 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
376 |
+
ps.append(p)
|
377 |
+
# 煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
378 |
+
done = [False]
|
379 |
+
threading.Thread(
|
380 |
+
target=if_done_multi,
|
381 |
+
args=(
|
382 |
+
done,
|
383 |
+
ps,
|
384 |
+
),
|
385 |
+
).start()
|
386 |
+
while 1:
|
387 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
388 |
+
yield (f.read())
|
389 |
+
sleep(1)
|
390 |
+
if done[0]:
|
391 |
+
break
|
392 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
393 |
+
log = f.read()
|
394 |
+
logger.info(log)
|
395 |
+
yield log
|
396 |
+
|
397 |
+
|
398 |
+
def get_pretrained_models(path_str, f0_str, sr2):
|
399 |
+
if_pretrained_generator_exist = os.access(
|
400 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
401 |
+
)
|
402 |
+
if_pretrained_discriminator_exist = os.access(
|
403 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
404 |
+
)
|
405 |
+
if not if_pretrained_generator_exist:
|
406 |
+
logger.warning(
|
407 |
+
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
|
408 |
+
path_str,
|
409 |
+
f0_str,
|
410 |
+
sr2,
|
411 |
+
)
|
412 |
+
if not if_pretrained_discriminator_exist:
|
413 |
+
logger.warning(
|
414 |
+
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
|
415 |
+
path_str,
|
416 |
+
f0_str,
|
417 |
+
sr2,
|
418 |
+
)
|
419 |
+
return (
|
420 |
+
(
|
421 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
422 |
+
if if_pretrained_generator_exist
|
423 |
+
else ""
|
424 |
+
),
|
425 |
+
(
|
426 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
427 |
+
if if_pretrained_discriminator_exist
|
428 |
+
else ""
|
429 |
+
),
|
430 |
+
)
|
431 |
+
|
432 |
+
|
433 |
+
def change_sr2(sr2, if_f0_3, version19):
|
434 |
+
path_str = "" if version19 == "v1" else "_v2"
|
435 |
+
f0_str = "f0" if if_f0_3 else ""
|
436 |
+
return get_pretrained_models(path_str, f0_str, sr2)
|
437 |
+
|
438 |
+
|
439 |
+
def change_version19(sr2, if_f0_3, version19):
|
440 |
+
path_str = "" if version19 == "v1" else "_v2"
|
441 |
+
if sr2 == "32k" and version19 == "v1":
|
442 |
+
sr2 = "40k"
|
443 |
+
to_return_sr2 = (
|
444 |
+
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
445 |
+
if version19 == "v1"
|
446 |
+
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
447 |
+
)
|
448 |
+
f0_str = "f0" if if_f0_3 else ""
|
449 |
+
return (
|
450 |
+
*get_pretrained_models(path_str, f0_str, sr2),
|
451 |
+
to_return_sr2,
|
452 |
+
)
|
453 |
+
|
454 |
+
|
455 |
+
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
456 |
+
path_str = "" if version19 == "v1" else "_v2"
|
457 |
+
return (
|
458 |
+
{"visible": if_f0_3, "__type__": "update"},
|
459 |
+
{"visible": if_f0_3, "__type__": "update"},
|
460 |
+
*get_pretrained_models(path_str, "f0" if if_f0_3 == True else "", sr2),
|
461 |
+
)
|
462 |
+
|
463 |
+
|
464 |
+
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
465 |
+
def click_train(
|
466 |
+
exp_dir1,
|
467 |
+
sr2,
|
468 |
+
if_f0_3,
|
469 |
+
spk_id5,
|
470 |
+
save_epoch10,
|
471 |
+
total_epoch11,
|
472 |
+
batch_size12,
|
473 |
+
if_save_latest13,
|
474 |
+
pretrained_G14,
|
475 |
+
pretrained_D15,
|
476 |
+
gpus16,
|
477 |
+
if_cache_gpu17,
|
478 |
+
if_save_every_weights18,
|
479 |
+
version19,
|
480 |
+
):
|
481 |
+
# 生成filelist
|
482 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
483 |
+
os.makedirs(exp_dir, exist_ok=True)
|
484 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
485 |
+
feature_dir = (
|
486 |
+
"%s/3_feature256" % (exp_dir)
|
487 |
+
if version19 == "v1"
|
488 |
+
else "%s/3_feature768" % (exp_dir)
|
489 |
+
)
|
490 |
+
if if_f0_3:
|
491 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
492 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
493 |
+
names = (
|
494 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
495 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
496 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
497 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
498 |
+
)
|
499 |
+
else:
|
500 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
501 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
502 |
+
)
|
503 |
+
opt = []
|
504 |
+
for name in names:
|
505 |
+
if if_f0_3:
|
506 |
+
opt.append(
|
507 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
508 |
+
% (
|
509 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
510 |
+
name,
|
511 |
+
feature_dir.replace("\\", "\\\\"),
|
512 |
+
name,
|
513 |
+
f0_dir.replace("\\", "\\\\"),
|
514 |
+
name,
|
515 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
516 |
+
name,
|
517 |
+
spk_id5,
|
518 |
+
)
|
519 |
+
)
|
520 |
+
else:
|
521 |
+
opt.append(
|
522 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
523 |
+
% (
|
524 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
525 |
+
name,
|
526 |
+
feature_dir.replace("\\", "\\\\"),
|
527 |
+
name,
|
528 |
+
spk_id5,
|
529 |
+
)
|
530 |
+
)
|
531 |
+
fea_dim = 256 if version19 == "v1" else 768
|
532 |
+
if if_f0_3:
|
533 |
+
for _ in range(2):
|
534 |
+
opt.append(
|
535 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
536 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
537 |
+
)
|
538 |
+
else:
|
539 |
+
for _ in range(2):
|
540 |
+
opt.append(
|
541 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
542 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
543 |
+
)
|
544 |
+
shuffle(opt)
|
545 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
546 |
+
f.write("\n".join(opt))
|
547 |
+
logger.debug("Write filelist done")
|
548 |
+
# 生成config#无需生成config
|
549 |
+
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
550 |
+
logger.info("Use gpus: %s", str(gpus16))
|
551 |
+
if pretrained_G14 == "":
|
552 |
+
logger.info("No pretrained Generator")
|
553 |
+
if pretrained_D15 == "":
|
554 |
+
logger.info("No pretrained Discriminator")
|
555 |
+
if version19 == "v1" or sr2 == "40k":
|
556 |
+
config_path = "v1/%s.json" % sr2
|
557 |
+
else:
|
558 |
+
config_path = "v2/%s.json" % sr2
|
559 |
+
config_save_path = os.path.join(exp_dir, "config.json")
|
560 |
+
if not pathlib.Path(config_save_path).exists():
|
561 |
+
with open(config_save_path, "w", encoding="utf-8") as f:
|
562 |
+
json.dump(
|
563 |
+
config.json_config[config_path],
|
564 |
+
f,
|
565 |
+
ensure_ascii=False,
|
566 |
+
indent=4,
|
567 |
+
sort_keys=True,
|
568 |
+
)
|
569 |
+
f.write("\n")
|
570 |
+
if gpus16:
|
571 |
+
cmd = (
|
572 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
573 |
+
% (
|
574 |
+
config.python_cmd,
|
575 |
+
exp_dir1,
|
576 |
+
sr2,
|
577 |
+
1 if if_f0_3 else 0,
|
578 |
+
batch_size12,
|
579 |
+
gpus16,
|
580 |
+
total_epoch11,
|
581 |
+
save_epoch10,
|
582 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
583 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
584 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
585 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
586 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
587 |
+
version19,
|
588 |
+
)
|
589 |
+
)
|
590 |
+
else:
|
591 |
+
cmd = (
|
592 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
593 |
+
% (
|
594 |
+
config.python_cmd,
|
595 |
+
exp_dir1,
|
596 |
+
sr2,
|
597 |
+
1 if if_f0_3 else 0,
|
598 |
+
batch_size12,
|
599 |
+
total_epoch11,
|
600 |
+
save_epoch10,
|
601 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
602 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
603 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
604 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
605 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
606 |
+
version19,
|
607 |
+
)
|
608 |
+
)
|
609 |
+
logger.info("Execute: " + cmd)
|
610 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
611 |
+
p.wait()
|
612 |
+
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
613 |
+
|
614 |
+
|
615 |
+
# but4.click(train_index, [exp_dir1], info3)
|
616 |
+
def train_index(exp_dir1, version19):
|
617 |
+
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
618 |
+
exp_dir = "logs/%s" % (exp_dir1)
|
619 |
+
os.makedirs(exp_dir, exist_ok=True)
|
620 |
+
feature_dir = (
|
621 |
+
"%s/3_feature256" % (exp_dir)
|
622 |
+
if version19 == "v1"
|
623 |
+
else "%s/3_feature768" % (exp_dir)
|
624 |
+
)
|
625 |
+
if not os.path.exists(feature_dir):
|
626 |
+
return "请先进行特征提取!"
|
627 |
+
listdir_res = list(os.listdir(feature_dir))
|
628 |
+
if len(listdir_res) == 0:
|
629 |
+
return "请先进行特征提取!"
|
630 |
+
infos = []
|
631 |
+
npys = []
|
632 |
+
for name in sorted(listdir_res):
|
633 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
634 |
+
npys.append(phone)
|
635 |
+
big_npy = np.concatenate(npys, 0)
|
636 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
637 |
+
np.random.shuffle(big_npy_idx)
|
638 |
+
big_npy = big_npy[big_npy_idx]
|
639 |
+
if big_npy.shape[0] > 2e5:
|
640 |
+
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
641 |
+
yield "\n".join(infos)
|
642 |
+
try:
|
643 |
+
big_npy = (
|
644 |
+
MiniBatchKMeans(
|
645 |
+
n_clusters=10000,
|
646 |
+
verbose=True,
|
647 |
+
batch_size=256 * config.n_cpu,
|
648 |
+
compute_labels=False,
|
649 |
+
init="random",
|
650 |
+
)
|
651 |
+
.fit(big_npy)
|
652 |
+
.cluster_centers_
|
653 |
+
)
|
654 |
+
except:
|
655 |
+
info = traceback.format_exc()
|
656 |
+
logger.info(info)
|
657 |
+
infos.append(info)
|
658 |
+
yield "\n".join(infos)
|
659 |
+
|
660 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
661 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
662 |
+
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
663 |
+
yield "\n".join(infos)
|
664 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
665 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
666 |
+
infos.append("training")
|
667 |
+
yield "\n".join(infos)
|
668 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
669 |
+
index_ivf.nprobe = 1
|
670 |
+
index.train(big_npy)
|
671 |
+
faiss.write_index(
|
672 |
+
index,
|
673 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
674 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
675 |
+
)
|
676 |
+
infos.append("adding")
|
677 |
+
yield "\n".join(infos)
|
678 |
+
batch_size_add = 8192
|
679 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
680 |
+
index.add(big_npy[i : i + batch_size_add])
|
681 |
+
faiss.write_index(
|
682 |
+
index,
|
683 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
684 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
685 |
+
)
|
686 |
+
infos.append(
|
687 |
+
"成功构建索引 added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
688 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
689 |
+
)
|
690 |
+
try:
|
691 |
+
link = os.link if platform.system() == "Windows" else os.symlink
|
692 |
+
link(
|
693 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
694 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
695 |
+
"%s/%s_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
696 |
+
% (
|
697 |
+
outside_index_root,
|
698 |
+
exp_dir1,
|
699 |
+
n_ivf,
|
700 |
+
index_ivf.nprobe,
|
701 |
+
exp_dir1,
|
702 |
+
version19,
|
703 |
+
),
|
704 |
+
)
|
705 |
+
infos.append("链接索引到外部-%s" % (outside_index_root))
|
706 |
+
except:
|
707 |
+
infos.append("链接索引到外部-%s失败" % (outside_index_root))
|
708 |
+
|
709 |
+
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
710 |
+
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
711 |
+
yield "\n".join(infos)
|
712 |
+
|
713 |
+
|
714 |
+
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
715 |
+
def train1key(
|
716 |
+
exp_dir1,
|
717 |
+
sr2,
|
718 |
+
if_f0_3,
|
719 |
+
trainset_dir4,
|
720 |
+
spk_id5,
|
721 |
+
np7,
|
722 |
+
f0method8,
|
723 |
+
save_epoch10,
|
724 |
+
total_epoch11,
|
725 |
+
batch_size12,
|
726 |
+
if_save_latest13,
|
727 |
+
pretrained_G14,
|
728 |
+
pretrained_D15,
|
729 |
+
gpus16,
|
730 |
+
if_cache_gpu17,
|
731 |
+
if_save_every_weights18,
|
732 |
+
version19,
|
733 |
+
gpus_rmvpe,
|
734 |
+
):
|
735 |
+
infos = []
|
736 |
+
|
737 |
+
def get_info_str(strr):
|
738 |
+
infos.append(strr)
|
739 |
+
return "\n".join(infos)
|
740 |
+
|
741 |
+
# step1:处理数据
|
742 |
+
yield get_info_str(i18n("step1:正在处理数据"))
|
743 |
+
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
|
744 |
+
|
745 |
+
# step2a:提取音高
|
746 |
+
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
|
747 |
+
[
|
748 |
+
get_info_str(_)
|
749 |
+
for _ in extract_f0_feature(
|
750 |
+
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
|
751 |
+
)
|
752 |
+
]
|
753 |
+
|
754 |
+
# step3a:训练模型
|
755 |
+
yield get_info_str(i18n("step3a:正在训练模型"))
|
756 |
+
click_train(
|
757 |
+
exp_dir1,
|
758 |
+
sr2,
|
759 |
+
if_f0_3,
|
760 |
+
spk_id5,
|
761 |
+
save_epoch10,
|
762 |
+
total_epoch11,
|
763 |
+
batch_size12,
|
764 |
+
if_save_latest13,
|
765 |
+
pretrained_G14,
|
766 |
+
pretrained_D15,
|
767 |
+
gpus16,
|
768 |
+
if_cache_gpu17,
|
769 |
+
if_save_every_weights18,
|
770 |
+
version19,
|
771 |
+
)
|
772 |
+
yield get_info_str(
|
773 |
+
i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")
|
774 |
+
)
|
775 |
+
|
776 |
+
# step3b:训练索引
|
777 |
+
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
|
778 |
+
yield get_info_str(i18n("全流程结束!"))
|
779 |
+
|
780 |
+
|
781 |
+
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
782 |
+
def change_info_(ckpt_path):
|
783 |
+
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
784 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
785 |
+
try:
|
786 |
+
with open(
|
787 |
+
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
788 |
+
) as f:
|
789 |
+
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
790 |
+
sr, f0 = info["sample_rate"], info["if_f0"]
|
791 |
+
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
792 |
+
return sr, str(f0), version
|
793 |
+
except:
|
794 |
+
traceback.print_exc()
|
795 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
796 |
+
|
797 |
+
|
798 |
+
F0GPUVisible = config.dml == False
|
799 |
+
|
800 |
+
|
801 |
+
def change_f0_method(f0method8):
|
802 |
+
if f0method8 == "rmvpe_gpu":
|
803 |
+
visible = F0GPUVisible
|
804 |
+
else:
|
805 |
+
visible = False
|
806 |
+
return {"visible": visible, "__type__": "update"}
|
807 |
+
|
808 |
+
|
809 |
+
with gr.Blocks(title="RVC WebUI") as app:
|
810 |
+
gr.Markdown("## RVC WebUI")
|
811 |
+
gr.Markdown(
|
812 |
+
value=i18n(
|
813 |
+
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>."
|
814 |
+
)
|
815 |
+
)
|
816 |
+
with gr.Tabs():
|
817 |
+
with gr.TabItem(i18n("训练")):
|
818 |
+
gr.Markdown(
|
819 |
+
value=i18n(
|
820 |
+
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
|
821 |
+
)
|
822 |
+
)
|
823 |
+
with gr.Row():
|
824 |
+
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
|
825 |
+
sr2 = gr.Radio(
|
826 |
+
label=i18n("目标采样率"),
|
827 |
+
choices=["40k", "48k"],
|
828 |
+
value="40k",
|
829 |
+
interactive=True,
|
830 |
+
)
|
831 |
+
if_f0_3 = gr.Radio(
|
832 |
+
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
833 |
+
choices=[True, False],
|
834 |
+
value=True,
|
835 |
+
interactive=True,
|
836 |
+
)
|
837 |
+
version19 = gr.Radio(
|
838 |
+
label=i18n("版本"),
|
839 |
+
choices=["v1", "v2"],
|
840 |
+
value="v2",
|
841 |
+
interactive=True,
|
842 |
+
visible=True,
|
843 |
+
)
|
844 |
+
np7 = gr.Slider(
|
845 |
+
minimum=0,
|
846 |
+
maximum=config.n_cpu,
|
847 |
+
step=1,
|
848 |
+
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
849 |
+
value=int(np.ceil(config.n_cpu / 1.5)),
|
850 |
+
interactive=True,
|
851 |
+
)
|
852 |
+
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
|
853 |
+
gr.Markdown(
|
854 |
+
value=i18n(
|
855 |
+
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
|
856 |
+
)
|
857 |
+
)
|
858 |
+
with gr.Row():
|
859 |
+
trainset_dir4 = gr.Textbox(
|
860 |
+
label=i18n("输入训练文件夹路径"),
|
861 |
+
value=i18n("E:\\语音音频+标注\\米津玄师\\src"),
|
862 |
+
)
|
863 |
+
spk_id5 = gr.Slider(
|
864 |
+
minimum=0,
|
865 |
+
maximum=4,
|
866 |
+
step=1,
|
867 |
+
label=i18n("请指定说话人id"),
|
868 |
+
value=0,
|
869 |
+
interactive=True,
|
870 |
+
)
|
871 |
+
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
872 |
+
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
873 |
+
but1.click(
|
874 |
+
preprocess_dataset,
|
875 |
+
[trainset_dir4, exp_dir1, sr2, np7],
|
876 |
+
[info1],
|
877 |
+
api_name="train_preprocess",
|
878 |
+
)
|
879 |
+
with gr.Group():
|
880 |
+
gr.Markdown(
|
881 |
+
value=i18n(
|
882 |
+
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"
|
883 |
+
)
|
884 |
+
)
|
885 |
+
with gr.Row():
|
886 |
+
with gr.Column():
|
887 |
+
gpus6 = gr.Textbox(
|
888 |
+
label=i18n(
|
889 |
+
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
|
890 |
+
),
|
891 |
+
value=gpus,
|
892 |
+
interactive=True,
|
893 |
+
visible=F0GPUVisible,
|
894 |
+
)
|
895 |
+
gpu_info9 = gr.Textbox(
|
896 |
+
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
|
897 |
+
)
|
898 |
+
with gr.Column():
|
899 |
+
f0method8 = gr.Radio(
|
900 |
+
label=i18n(
|
901 |
+
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
|
902 |
+
),
|
903 |
+
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
|
904 |
+
value="rmvpe_gpu",
|
905 |
+
interactive=True,
|
906 |
+
)
|
907 |
+
gpus_rmvpe = gr.Textbox(
|
908 |
+
label=i18n(
|
909 |
+
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
|
910 |
+
),
|
911 |
+
value="%s-%s" % (gpus, gpus),
|
912 |
+
interactive=True,
|
913 |
+
visible=F0GPUVisible,
|
914 |
+
)
|
915 |
+
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
916 |
+
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
917 |
+
f0method8.change(
|
918 |
+
fn=change_f0_method,
|
919 |
+
inputs=[f0method8],
|
920 |
+
outputs=[gpus_rmvpe],
|
921 |
+
)
|
922 |
+
but2.click(
|
923 |
+
extract_f0_feature,
|
924 |
+
[
|
925 |
+
gpus6,
|
926 |
+
np7,
|
927 |
+
f0method8,
|
928 |
+
if_f0_3,
|
929 |
+
exp_dir1,
|
930 |
+
version19,
|
931 |
+
gpus_rmvpe,
|
932 |
+
],
|
933 |
+
[info2],
|
934 |
+
api_name="train_extract_f0_feature",
|
935 |
+
)
|
936 |
+
with gr.Group():
|
937 |
+
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
938 |
+
with gr.Row():
|
939 |
+
save_epoch10 = gr.Slider(
|
940 |
+
minimum=1,
|
941 |
+
maximum=50,
|
942 |
+
step=1,
|
943 |
+
label=i18n("保存频率save_every_epoch"),
|
944 |
+
value=5,
|
945 |
+
interactive=True,
|
946 |
+
)
|
947 |
+
total_epoch11 = gr.Slider(
|
948 |
+
minimum=2,
|
949 |
+
maximum=1000,
|
950 |
+
step=1,
|
951 |
+
label=i18n("总训练轮数total_epoch"),
|
952 |
+
value=20,
|
953 |
+
interactive=True,
|
954 |
+
)
|
955 |
+
batch_size12 = gr.Slider(
|
956 |
+
minimum=1,
|
957 |
+
maximum=40,
|
958 |
+
step=1,
|
959 |
+
label=i18n("每张显卡的batch_size"),
|
960 |
+
value=default_batch_size,
|
961 |
+
interactive=True,
|
962 |
+
)
|
963 |
+
if_save_latest13 = gr.Radio(
|
964 |
+
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
965 |
+
choices=[i18n("是"), i18n("否")],
|
966 |
+
value=i18n("否"),
|
967 |
+
interactive=True,
|
968 |
+
)
|
969 |
+
if_cache_gpu17 = gr.Radio(
|
970 |
+
label=i18n(
|
971 |
+
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
972 |
+
),
|
973 |
+
choices=[i18n("是"), i18n("否")],
|
974 |
+
value=i18n("否"),
|
975 |
+
interactive=True,
|
976 |
+
)
|
977 |
+
if_save_every_weights18 = gr.Radio(
|
978 |
+
label=i18n(
|
979 |
+
"是否在每次保存时间点将最终小模型保存至weights文件夹"
|
980 |
+
),
|
981 |
+
choices=[i18n("是"), i18n("否")],
|
982 |
+
value=i18n("否"),
|
983 |
+
interactive=True,
|
984 |
+
)
|
985 |
+
with gr.Row():
|
986 |
+
pretrained_G14 = gr.Textbox(
|
987 |
+
label=i18n("加载预训练底模G路径"),
|
988 |
+
value="assets/pretrained_v2/f0G40k.pth",
|
989 |
+
interactive=True,
|
990 |
+
)
|
991 |
+
pretrained_D15 = gr.Textbox(
|
992 |
+
label=i18n("加载预训练底模D路径"),
|
993 |
+
value="assets/pretrained_v2/f0D40k.pth",
|
994 |
+
interactive=True,
|
995 |
+
)
|
996 |
+
sr2.change(
|
997 |
+
change_sr2,
|
998 |
+
[sr2, if_f0_3, version19],
|
999 |
+
[pretrained_G14, pretrained_D15],
|
1000 |
+
)
|
1001 |
+
version19.change(
|
1002 |
+
change_version19,
|
1003 |
+
[sr2, if_f0_3, version19],
|
1004 |
+
[pretrained_G14, pretrained_D15, sr2],
|
1005 |
+
)
|
1006 |
+
if_f0_3.change(
|
1007 |
+
change_f0,
|
1008 |
+
[if_f0_3, sr2, version19],
|
1009 |
+
[f0method8, gpus_rmvpe, pretrained_G14, pretrained_D15],
|
1010 |
+
)
|
1011 |
+
gpus16 = gr.Textbox(
|
1012 |
+
label=i18n(
|
1013 |
+
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"
|
1014 |
+
),
|
1015 |
+
value=gpus,
|
1016 |
+
interactive=True,
|
1017 |
+
)
|
1018 |
+
but3 = gr.Button(i18n("训练模型"), variant="primary")
|
1019 |
+
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
1020 |
+
but5 = gr.Button(i18n("一键训练"), variant="primary")
|
1021 |
+
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
1022 |
+
but3.click(
|
1023 |
+
click_train,
|
1024 |
+
[
|
1025 |
+
exp_dir1,
|
1026 |
+
sr2,
|
1027 |
+
if_f0_3,
|
1028 |
+
spk_id5,
|
1029 |
+
save_epoch10,
|
1030 |
+
total_epoch11,
|
1031 |
+
batch_size12,
|
1032 |
+
if_save_latest13,
|
1033 |
+
pretrained_G14,
|
1034 |
+
pretrained_D15,
|
1035 |
+
gpus16,
|
1036 |
+
if_cache_gpu17,
|
1037 |
+
if_save_every_weights18,
|
1038 |
+
version19,
|
1039 |
+
],
|
1040 |
+
info3,
|
1041 |
+
api_name="train_start",
|
1042 |
+
)
|
1043 |
+
but4.click(train_index, [exp_dir1, version19], info3)
|
1044 |
+
but5.click(
|
1045 |
+
train1key,
|
1046 |
+
[
|
1047 |
+
exp_dir1,
|
1048 |
+
sr2,
|
1049 |
+
if_f0_3,
|
1050 |
+
trainset_dir4,
|
1051 |
+
spk_id5,
|
1052 |
+
np7,
|
1053 |
+
f0method8,
|
1054 |
+
save_epoch10,
|
1055 |
+
total_epoch11,
|
1056 |
+
batch_size12,
|
1057 |
+
if_save_latest13,
|
1058 |
+
pretrained_G14,
|
1059 |
+
pretrained_D15,
|
1060 |
+
gpus16,
|
1061 |
+
if_cache_gpu17,
|
1062 |
+
if_save_every_weights18,
|
1063 |
+
version19,
|
1064 |
+
gpus_rmvpe,
|
1065 |
+
],
|
1066 |
+
info3,
|
1067 |
+
api_name="train_start_all",
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
with gr.TabItem(i18n("ckpt处理")):
|
1071 |
+
with gr.Group():
|
1072 |
+
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
|
1073 |
+
with gr.Row():
|
1074 |
+
ckpt_a = gr.Textbox(
|
1075 |
+
label=i18n("A模型路径"), value="", interactive=True
|
1076 |
+
)
|
1077 |
+
ckpt_b = gr.Textbox(
|
1078 |
+
label=i18n("B模型路径"), value="", interactive=True
|
1079 |
+
)
|
1080 |
+
alpha_a = gr.Slider(
|
1081 |
+
minimum=0,
|
1082 |
+
maximum=1,
|
1083 |
+
label=i18n("A模型权重"),
|
1084 |
+
value=0.5,
|
1085 |
+
interactive=True,
|
1086 |
+
)
|
1087 |
+
with gr.Row():
|
1088 |
+
sr_ = gr.Radio(
|
1089 |
+
label=i18n("目标采样率"),
|
1090 |
+
choices=["40k", "48k"],
|
1091 |
+
value="40k",
|
1092 |
+
interactive=True,
|
1093 |
+
)
|
1094 |
+
if_f0_ = gr.Radio(
|
1095 |
+
label=i18n("模型是否带音高指导"),
|
1096 |
+
choices=[i18n("是"), i18n("否")],
|
1097 |
+
value=i18n("是"),
|
1098 |
+
interactive=True,
|
1099 |
+
)
|
1100 |
+
info__ = gr.Textbox(
|
1101 |
+
label=i18n("要置入的模型信息"),
|
1102 |
+
value="",
|
1103 |
+
max_lines=8,
|
1104 |
+
interactive=True,
|
1105 |
+
)
|
1106 |
+
name_to_save0 = gr.Textbox(
|
1107 |
+
label=i18n("保存的模型名不带后缀"),
|
1108 |
+
value="",
|
1109 |
+
max_lines=1,
|
1110 |
+
interactive=True,
|
1111 |
+
)
|
1112 |
+
version_2 = gr.Radio(
|
1113 |
+
label=i18n("模型版本型号"),
|
1114 |
+
choices=["v1", "v2"],
|
1115 |
+
value="v1",
|
1116 |
+
interactive=True,
|
1117 |
+
)
|
1118 |
+
with gr.Row():
|
1119 |
+
but6 = gr.Button(i18n("融合"), variant="primary")
|
1120 |
+
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1121 |
+
but6.click(
|
1122 |
+
merge,
|
1123 |
+
[
|
1124 |
+
ckpt_a,
|
1125 |
+
ckpt_b,
|
1126 |
+
alpha_a,
|
1127 |
+
sr_,
|
1128 |
+
if_f0_,
|
1129 |
+
info__,
|
1130 |
+
name_to_save0,
|
1131 |
+
version_2,
|
1132 |
+
],
|
1133 |
+
info4,
|
1134 |
+
api_name="ckpt_merge",
|
1135 |
+
) # def merge(path1,path2,alpha1,sr,f0,info):
|
1136 |
+
with gr.Group():
|
1137 |
+
gr.Markdown(
|
1138 |
+
value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")
|
1139 |
+
)
|
1140 |
+
with gr.Row():
|
1141 |
+
ckpt_path0 = gr.Textbox(
|
1142 |
+
label=i18n("模型路径"), value="", interactive=True
|
1143 |
+
)
|
1144 |
+
info_ = gr.Textbox(
|
1145 |
+
label=i18n("要改的模型信息"),
|
1146 |
+
value="",
|
1147 |
+
max_lines=8,
|
1148 |
+
interactive=True,
|
1149 |
+
)
|
1150 |
+
name_to_save1 = gr.Textbox(
|
1151 |
+
label=i18n("保存的文件名, 默认空为和源文件同名"),
|
1152 |
+
value="",
|
1153 |
+
max_lines=8,
|
1154 |
+
interactive=True,
|
1155 |
+
)
|
1156 |
+
with gr.Row():
|
1157 |
+
but7 = gr.Button(i18n("修改"), variant="primary")
|
1158 |
+
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1159 |
+
but7.click(
|
1160 |
+
change_info,
|
1161 |
+
[ckpt_path0, info_, name_to_save1],
|
1162 |
+
info5,
|
1163 |
+
api_name="ckpt_modify",
|
1164 |
+
)
|
1165 |
+
with gr.Group():
|
1166 |
+
gr.Markdown(
|
1167 |
+
value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")
|
1168 |
+
)
|
1169 |
+
with gr.Row():
|
1170 |
+
ckpt_path1 = gr.Textbox(
|
1171 |
+
label=i18n("模型路径"), value="", interactive=True
|
1172 |
+
)
|
1173 |
+
but8 = gr.Button(i18n("查看"), variant="primary")
|
1174 |
+
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1175 |
+
but8.click(show_info, [ckpt_path1], info6, api_name="ckpt_show")
|
1176 |
+
with gr.Group():
|
1177 |
+
gr.Markdown(
|
1178 |
+
value=i18n(
|
1179 |
+
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
|
1180 |
+
)
|
1181 |
+
)
|
1182 |
+
with gr.Row():
|
1183 |
+
ckpt_path2 = gr.Textbox(
|
1184 |
+
label=i18n("模型路径"),
|
1185 |
+
value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth",
|
1186 |
+
interactive=True,
|
1187 |
+
)
|
1188 |
+
save_name = gr.Textbox(
|
1189 |
+
label=i18n("保存名"), value="", interactive=True
|
1190 |
+
)
|
1191 |
+
sr__ = gr.Radio(
|
1192 |
+
label=i18n("目标采样率"),
|
1193 |
+
choices=["32k", "40k", "48k"],
|
1194 |
+
value="40k",
|
1195 |
+
interactive=True,
|
1196 |
+
)
|
1197 |
+
if_f0__ = gr.Radio(
|
1198 |
+
label=i18n("模型是否带音高指导,1是0否"),
|
1199 |
+
choices=["1", "0"],
|
1200 |
+
value="1",
|
1201 |
+
interactive=True,
|
1202 |
+
)
|
1203 |
+
version_1 = gr.Radio(
|
1204 |
+
label=i18n("模型版本型号"),
|
1205 |
+
choices=["v1", "v2"],
|
1206 |
+
value="v2",
|
1207 |
+
interactive=True,
|
1208 |
+
)
|
1209 |
+
info___ = gr.Textbox(
|
1210 |
+
label=i18n("要置入的模型信息"),
|
1211 |
+
value="",
|
1212 |
+
max_lines=8,
|
1213 |
+
interactive=True,
|
1214 |
+
)
|
1215 |
+
but9 = gr.Button(i18n("提取"), variant="primary")
|
1216 |
+
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1217 |
+
ckpt_path2.change(
|
1218 |
+
change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
|
1219 |
+
)
|
1220 |
+
but9.click(
|
1221 |
+
extract_small_model,
|
1222 |
+
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
|
1223 |
+
info7,
|
1224 |
+
api_name="ckpt_extract",
|
1225 |
+
)
|
1226 |
+
|
1227 |
+
with gr.TabItem(i18n("Onnx导出")):
|
1228 |
+
with gr.Row():
|
1229 |
+
ckpt_dir = gr.Textbox(
|
1230 |
+
label=i18n("RVC模型路径"), value="", interactive=True
|
1231 |
+
)
|
1232 |
+
with gr.Row():
|
1233 |
+
onnx_dir = gr.Textbox(
|
1234 |
+
label=i18n("Onnx输出路径"), value="", interactive=True
|
1235 |
+
)
|
1236 |
+
with gr.Row():
|
1237 |
+
infoOnnx = gr.Label(label="info")
|
1238 |
+
with gr.Row():
|
1239 |
+
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
|
1240 |
+
butOnnx.click(
|
1241 |
+
export_onnx, [ckpt_dir, onnx_dir], infoOnnx, api_name="export_onnx"
|
1242 |
+
)
|
1243 |
+
|
1244 |
+
tab_faq = i18n("常见问题解答")
|
1245 |
+
with gr.TabItem(tab_faq):
|
1246 |
+
try:
|
1247 |
+
if tab_faq == "常见问题解答":
|
1248 |
+
with open("docs/cn/faq.md", "r", encoding="utf8") as f:
|
1249 |
+
info = f.read()
|
1250 |
+
else:
|
1251 |
+
with open("docs/en/faq_en.md", "r", encoding="utf8") as f:
|
1252 |
+
info = f.read()
|
1253 |
+
gr.Markdown(value=info)
|
1254 |
+
except:
|
1255 |
+
gr.Markdown(traceback.format_exc())
|
1256 |
+
|
1257 |
+
if config.iscolab:
|
1258 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
1259 |
+
else:
|
1260 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
1261 |
+
server_name="0.0.0.0",
|
1262 |
+
inbrowser=not config.noautoopen,
|
1263 |
+
server_port=config.listen_port,
|
1264 |
+
quiet=True,
|
1265 |
+
)
|
infer/modules/train/train.py
CHANGED
@@ -11,9 +11,9 @@ import datetime
|
|
11 |
|
12 |
from infer.lib.train import utils
|
13 |
|
14 |
-
hps = utils.get_hparams()
|
15 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = hps.gpus.replace("-", ",")
|
16 |
-
n_gpus = len(hps.gpus.split("-"))
|
17 |
from random import randint, shuffle
|
18 |
|
19 |
import torch
|
@@ -54,18 +54,18 @@ from infer.lib.train.data_utils import (
|
|
54 |
TextAudioLoaderMultiNSFsid,
|
55 |
)
|
56 |
|
57 |
-
if hps.version == "v1":
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
else:
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
from infer.lib.train.losses import (
|
71 |
discriminator_loss,
|
@@ -76,8 +76,6 @@ from infer.lib.train.losses import (
|
|
76 |
from infer.lib.train.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
77 |
from infer.lib.train.process_ckpt import savee
|
78 |
|
79 |
-
global_step = 0
|
80 |
-
|
81 |
|
82 |
class EpochRecorder:
|
83 |
def __init__(self):
|
@@ -92,33 +90,31 @@ class EpochRecorder:
|
|
92 |
return f"[{current_time}] | ({elapsed_time_str})"
|
93 |
|
94 |
|
95 |
-
def
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
if torch.cuda.is_available() == False and torch.backends.mps.is_available() == True:
|
99 |
-
n_gpus = 1
|
100 |
-
if n_gpus < 1:
|
101 |
-
# patch to unblock people without gpus. there is probably a better way.
|
102 |
-
print("NO GPU DETECTED: falling back to CPU - this may take a while")
|
103 |
-
n_gpus = 1
|
104 |
-
os.environ["MASTER_ADDR"] = "localhost"
|
105 |
-
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
106 |
-
children = []
|
107 |
logger = utils.get_logger(hps.model_dir)
|
108 |
-
|
109 |
-
subproc = mp.Process(
|
110 |
-
target=run,
|
111 |
-
args=(i, n_gpus, hps, logger),
|
112 |
-
)
|
113 |
-
children.append(subproc)
|
114 |
-
subproc.start()
|
115 |
-
|
116 |
-
for i in range(n_gpus):
|
117 |
-
children[i].join()
|
118 |
|
119 |
|
120 |
-
def run(rank, n_gpus, hps, logger: logging.Logger):
|
121 |
-
global global_step
|
122 |
if rank == 0:
|
123 |
# logger = utils.get_logger(hps.model_dir)
|
124 |
logger.info(hps)
|
@@ -215,13 +211,14 @@ def run(rank, n_gpus, hps, logger: logging.Logger):
|
|
215 |
_, _, _, epoch_str = utils.load_checkpoint(
|
216 |
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g
|
217 |
)
|
218 |
-
global_step = (epoch_str - 1) * len(train_loader)
|
|
|
219 |
# epoch_str = 1
|
220 |
# global_step = 0
|
221 |
except: # 如果首次不能加载,加载pretrain
|
222 |
# traceback.print_exc()
|
223 |
epoch_str = 1
|
224 |
-
global_step = 0
|
225 |
if hps.pretrainG != "":
|
226 |
if rank == 0:
|
227 |
logger.info("loaded pretrained %s" % (hps.pretrainG))
|
@@ -252,6 +249,7 @@ def run(rank, n_gpus, hps, logger: logging.Logger):
|
|
252 |
torch.load(hps.pretrainD, map_location="cpu")["model"]
|
253 |
)
|
254 |
)
|
|
|
255 |
|
256 |
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
257 |
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
@@ -264,6 +262,7 @@ def run(rank, n_gpus, hps, logger: logging.Logger):
|
|
264 |
|
265 |
cache = []
|
266 |
for epoch in range(epoch_str, hps.train.epochs + 1):
|
|
|
267 |
if rank == 0:
|
268 |
train_and_evaluate(
|
269 |
rank,
|
@@ -277,6 +276,7 @@ def run(rank, n_gpus, hps, logger: logging.Logger):
|
|
277 |
logger,
|
278 |
[writer, writer_eval],
|
279 |
cache,
|
|
|
280 |
)
|
281 |
else:
|
282 |
train_and_evaluate(
|
@@ -291,13 +291,25 @@ def run(rank, n_gpus, hps, logger: logging.Logger):
|
|
291 |
None,
|
292 |
None,
|
293 |
cache,
|
|
|
294 |
)
|
295 |
scheduler_g.step()
|
296 |
scheduler_d.step()
|
297 |
|
298 |
|
299 |
def train_and_evaluate(
|
300 |
-
rank,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
):
|
302 |
net_g, net_d = nets
|
303 |
optim_g, optim_d = optims
|
@@ -306,7 +318,6 @@ def train_and_evaluate(
|
|
306 |
writer, writer_eval = writers
|
307 |
|
308 |
train_loader.batch_sampler.set_epoch(epoch)
|
309 |
-
global global_step
|
310 |
|
311 |
net_g.train()
|
312 |
net_d.train()
|
@@ -500,7 +511,7 @@ def train_and_evaluate(
|
|
500 |
scaler.update()
|
501 |
|
502 |
if rank == 0:
|
503 |
-
if global_step % hps.train.log_interval == 0:
|
504 |
lr = optim_g.param_groups[0]["lr"]
|
505 |
logger.info(
|
506 |
"Train Epoch: {} [{:.0f}%]".format(
|
@@ -513,7 +524,7 @@ def train_and_evaluate(
|
|
513 |
if loss_kl > 9:
|
514 |
loss_kl = 9
|
515 |
|
516 |
-
logger.info([global_step, lr])
|
517 |
logger.info(
|
518 |
f"loss_disc={loss_disc:.3f}, loss_gen={loss_gen:.3f}, loss_fm={loss_fm:.3f},loss_mel={loss_mel:.3f}, loss_kl={loss_kl:.3f}"
|
519 |
)
|
@@ -554,11 +565,11 @@ def train_and_evaluate(
|
|
554 |
}
|
555 |
utils.summarize(
|
556 |
writer=writer,
|
557 |
-
global_step=global_step,
|
558 |
images=image_dict,
|
559 |
scalars=scalar_dict,
|
560 |
)
|
561 |
-
global_step += 1
|
562 |
# /Run steps
|
563 |
|
564 |
if epoch % hps.save_every_epoch == 0 and rank == 0:
|
@@ -568,14 +579,14 @@ def train_and_evaluate(
|
|
568 |
optim_g,
|
569 |
hps.train.learning_rate,
|
570 |
epoch,
|
571 |
-
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
572 |
)
|
573 |
utils.save_checkpoint(
|
574 |
net_d,
|
575 |
optim_d,
|
576 |
hps.train.learning_rate,
|
577 |
epoch,
|
578 |
-
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
579 |
)
|
580 |
else:
|
581 |
utils.save_checkpoint(
|
@@ -606,7 +617,7 @@ def train_and_evaluate(
|
|
606 |
ckpt,
|
607 |
hps.sample_rate,
|
608 |
hps.if_f0,
|
609 |
-
hps.name + "_e%s_s%s" % (epoch, global_step),
|
610 |
epoch,
|
611 |
hps.version,
|
612 |
hps,
|
@@ -633,8 +644,3 @@ def train_and_evaluate(
|
|
633 |
)
|
634 |
sleep(1)
|
635 |
os._exit(2333333)
|
636 |
-
|
637 |
-
|
638 |
-
if __name__ == "__main__":
|
639 |
-
torch.multiprocessing.set_start_method("spawn")
|
640 |
-
main()
|
|
|
11 |
|
12 |
from infer.lib.train import utils
|
13 |
|
14 |
+
# hps = utils.get_hparams()
|
15 |
+
# os.environ["CUDA_VISIBLE_DEVICES"] = hps.gpus.replace("-", ",")
|
16 |
+
# n_gpus = len(hps.gpus.split("-"))
|
17 |
from random import randint, shuffle
|
18 |
|
19 |
import torch
|
|
|
54 |
TextAudioLoaderMultiNSFsid,
|
55 |
)
|
56 |
|
57 |
+
# if hps.version == "v1":
|
58 |
+
# from infer.lib.infer_pack.models import MultiPeriodDiscriminator
|
59 |
+
# from infer.lib.infer_pack.models import SynthesizerTrnMs256NSFsid as RVC_Model_f0
|
60 |
+
# from infer.lib.infer_pack.models import (
|
61 |
+
# SynthesizerTrnMs256NSFsid_nono as RVC_Model_nof0,
|
62 |
+
# )
|
63 |
+
# else:
|
64 |
+
from infer.lib.infer_pack.models import (
|
65 |
+
SynthesizerTrnMs768NSFsid as RVC_Model_f0,
|
66 |
+
SynthesizerTrnMs768NSFsid_nono as RVC_Model_nof0,
|
67 |
+
MultiPeriodDiscriminatorV2 as MultiPeriodDiscriminator,
|
68 |
+
)
|
69 |
|
70 |
from infer.lib.train.losses import (
|
71 |
discriminator_loss,
|
|
|
76 |
from infer.lib.train.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
77 |
from infer.lib.train.process_ckpt import savee
|
78 |
|
|
|
|
|
79 |
|
80 |
class EpochRecorder:
|
81 |
def __init__(self):
|
|
|
90 |
return f"[{current_time}] | ({elapsed_time_str})"
|
91 |
|
92 |
|
93 |
+
def train(exp_dir: str):
|
94 |
+
state = {"global_step": 0}
|
95 |
+
|
96 |
+
hps = utils.get_hparams_from_dir(exp_dir)
|
97 |
+
hps.experiment_dir = exp_dir
|
98 |
+
hps.save_every_epoch = False
|
99 |
+
hps.name = os.path.basename(exp_dir)
|
100 |
+
hps.total_epoch = 100
|
101 |
+
hps.pretrainG = ""
|
102 |
+
hps.pretrainD = ""
|
103 |
+
hps.version = "v2"
|
104 |
+
hps.gpus = "0"
|
105 |
+
hps.train.batch_size = 8
|
106 |
+
hps.sample_rate = "40k"
|
107 |
+
hps.if_f0 = 1
|
108 |
+
hps.if_latest = 1
|
109 |
+
hps.save_every_weights = "0"
|
110 |
+
hps.if_cache_data_in_gpu = True
|
111 |
+
hps.data.training_files = "%s/filelist.txt" % exp_dir
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
logger = utils.get_logger(hps.model_dir)
|
114 |
+
run(0, 1, hps, logger, state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
|
117 |
+
def run(rank, n_gpus, hps, logger: logging.Logger, state):
|
|
|
118 |
if rank == 0:
|
119 |
# logger = utils.get_logger(hps.model_dir)
|
120 |
logger.info(hps)
|
|
|
211 |
_, _, _, epoch_str = utils.load_checkpoint(
|
212 |
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g
|
213 |
)
|
214 |
+
state["global_step"] = (epoch_str - 1) * len(train_loader)
|
215 |
+
print("loaded", epoch_str)
|
216 |
# epoch_str = 1
|
217 |
# global_step = 0
|
218 |
except: # 如果首次不能加载,加载pretrain
|
219 |
# traceback.print_exc()
|
220 |
epoch_str = 1
|
221 |
+
state["global_step"] = 0
|
222 |
if hps.pretrainG != "":
|
223 |
if rank == 0:
|
224 |
logger.info("loaded pretrained %s" % (hps.pretrainG))
|
|
|
249 |
torch.load(hps.pretrainD, map_location="cpu")["model"]
|
250 |
)
|
251 |
)
|
252 |
+
print("new")
|
253 |
|
254 |
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
255 |
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
|
|
262 |
|
263 |
cache = []
|
264 |
for epoch in range(epoch_str, hps.train.epochs + 1):
|
265 |
+
print("epoch", epoch)
|
266 |
if rank == 0:
|
267 |
train_and_evaluate(
|
268 |
rank,
|
|
|
276 |
logger,
|
277 |
[writer, writer_eval],
|
278 |
cache,
|
279 |
+
state,
|
280 |
)
|
281 |
else:
|
282 |
train_and_evaluate(
|
|
|
291 |
None,
|
292 |
None,
|
293 |
cache,
|
294 |
+
state,
|
295 |
)
|
296 |
scheduler_g.step()
|
297 |
scheduler_d.step()
|
298 |
|
299 |
|
300 |
def train_and_evaluate(
|
301 |
+
rank,
|
302 |
+
epoch,
|
303 |
+
hps,
|
304 |
+
nets,
|
305 |
+
optims,
|
306 |
+
schedulers,
|
307 |
+
scaler,
|
308 |
+
loaders,
|
309 |
+
logger,
|
310 |
+
writers,
|
311 |
+
cache,
|
312 |
+
state,
|
313 |
):
|
314 |
net_g, net_d = nets
|
315 |
optim_g, optim_d = optims
|
|
|
318 |
writer, writer_eval = writers
|
319 |
|
320 |
train_loader.batch_sampler.set_epoch(epoch)
|
|
|
321 |
|
322 |
net_g.train()
|
323 |
net_d.train()
|
|
|
511 |
scaler.update()
|
512 |
|
513 |
if rank == 0:
|
514 |
+
if state["global_step"] % hps.train.log_interval == 0:
|
515 |
lr = optim_g.param_groups[0]["lr"]
|
516 |
logger.info(
|
517 |
"Train Epoch: {} [{:.0f}%]".format(
|
|
|
524 |
if loss_kl > 9:
|
525 |
loss_kl = 9
|
526 |
|
527 |
+
logger.info([state["global_step"], lr])
|
528 |
logger.info(
|
529 |
f"loss_disc={loss_disc:.3f}, loss_gen={loss_gen:.3f}, loss_fm={loss_fm:.3f},loss_mel={loss_mel:.3f}, loss_kl={loss_kl:.3f}"
|
530 |
)
|
|
|
565 |
}
|
566 |
utils.summarize(
|
567 |
writer=writer,
|
568 |
+
global_step=state["global_step"],
|
569 |
images=image_dict,
|
570 |
scalars=scalar_dict,
|
571 |
)
|
572 |
+
state["global_step"] += 1
|
573 |
# /Run steps
|
574 |
|
575 |
if epoch % hps.save_every_epoch == 0 and rank == 0:
|
|
|
579 |
optim_g,
|
580 |
hps.train.learning_rate,
|
581 |
epoch,
|
582 |
+
os.path.join(hps.model_dir, "G_{}.pth".format(state["global_step"])),
|
583 |
)
|
584 |
utils.save_checkpoint(
|
585 |
net_d,
|
586 |
optim_d,
|
587 |
hps.train.learning_rate,
|
588 |
epoch,
|
589 |
+
os.path.join(hps.model_dir, "D_{}.pth".format(state["global_step"])),
|
590 |
)
|
591 |
else:
|
592 |
utils.save_checkpoint(
|
|
|
617 |
ckpt,
|
618 |
hps.sample_rate,
|
619 |
hps.if_f0,
|
620 |
+
hps.name + "_e%s_s%s" % (epoch, state["global_step"]),
|
621 |
epoch,
|
622 |
hps.version,
|
623 |
hps,
|
|
|
644 |
)
|
645 |
sleep(1)
|
646 |
os._exit(2333333)
|
|
|
|
|
|
|
|
|
|
logs/mute/0_gt_wavs/mute32k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9edcf85ec77e88bd01edf3d887bdc418d3596d573f7ad2694da546f41dae6baf
|
3 |
+
size 192078
|
logs/mute/0_gt_wavs/mute40k.spec.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bbca900dcff32be4d664383a705d53ebc6829027ac8a07d78308d472c9087a1
|
3 |
+
size 1230339
|
logs/mute/0_gt_wavs/mute40k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67a816e77b50cb9f016e49e5c01f07e080c4e3b82b7a8ac3e64bcb143f90f31b
|
3 |
+
size 240078
|
logs/mute/0_gt_wavs/mute48k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f2bb4daaa106e351aebb001e5a25de985c0b472f22e8d60676bc924a79056ee
|
3 |
+
size 288078
|
logs/mute/1_16k_wavs/mute.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e233e86ba1be365e1133f157d56b61110086b89650ecfbdfc013c759e466250
|
3 |
+
size 96078
|
logs/mute/2a_f0/mute.wav.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b9acf9ab7facdb032e1d687fe35182670b0b94566c4b209ae48c239d19956a6
|
3 |
+
size 1332
|
logs/mute/2b-f0nsf/mute.wav.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30792849c8e72d67e6691754077f2888b101cb741e9c7f193c91dd9692870c87
|
3 |
+
size 2536
|
logs/mute/3_feature256/mute.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64d5abbac078e19a3f649c0d78a02cb33a71407ded3ddf2db78e6b803d0c0126
|
3 |
+
size 152704
|
logs/mute/3_feature768/mute.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16ef62b957887ac9f0913aa5158f18983afff1ef5a3e4c5fd067ac20fc380d54
|
3 |
+
size 457856
|