JaiSurya commited on
Commit
66d373d
1 Parent(s): 8ab5126

Added spaces code

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Law LM
3
+ emoji: 💬
4
+ colorFrom: yellow
5
+ colorTo: purple
6
+ sdk: gradio
7
+ app_file: app.py
8
+ pinned: false
9
+ license: llama3
10
+ ---
11
+
12
+ # About
13
+ Law Language Model is an RAG (**Retrieval Augmented Generation**) based LLM (**Large Language Model**) application that is used to solve one of the complex problem that is understanding **LAW** of India. As of now there is no availability for a common man in India to learn or know about Law. So this project's aim to provide a clarification of India Law with the implementation of RAG based LLM.
.ipynb_checkpoints/app-checkpoint.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ import spaces
4
+
5
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
6
+
7
+ @spaces.GPU
8
+ def respond(
9
+ message,
10
+ history: list[tuple[str, str]],
11
+ system_message,
12
+ max_tokens,
13
+ temperature,
14
+ top_p,
15
+ ):
16
+ messages = [{"role": "system", "content": system_message}]
17
+
18
+ for val in history:
19
+ if val[0]:
20
+ messages.append({"role": "user", "content": val[0]})
21
+ if val[1]:
22
+ messages.append({"role": "assistant", "content": val[1]})
23
+
24
+ messages.append({"role": "user", "content": message})
25
+
26
+ response = ""
27
+
28
+ for message in client.chat_completion(
29
+ messages,
30
+ max_tokens=max_tokens,
31
+ stream=True,
32
+ temperature=temperature,
33
+ top_p=top_p,
34
+ ):
35
+ token = message.choices[0].delta.content
36
+
37
+ response += token
38
+ yield response
39
+
40
+ demo = gr.ChatInterface(
41
+ respond,
42
+ additional_inputs=[
43
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
44
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
45
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
46
+ gr.Slider(
47
+ minimum=0.1,
48
+ maximum=1.0,
49
+ value=0.95,
50
+ step=0.05,
51
+ label="Top-p (nucleus sampling)",
52
+ ),
53
+ ],
54
+ )
55
+
56
+
57
+ if __name__ == "__main__":
58
+ demo.launch()
.ipynb_checkpoints/requirements-checkpoint.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ huggingface_hub==0.22.2
2
+ spaces
README.md CHANGED
@@ -9,4 +9,5 @@ pinned: false
9
  license: llama3
10
  ---
11
 
12
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
 
9
  license: llama3
10
  ---
11
 
12
+ # About
13
+ Law Language Model is an RAG (**Retrieval Augmented Generation**) based LLM (**Large Language Model**) application that is used to solve one of the complex problem that is understanding **LAW** of India. As of now there is no availability for a common man in India to learn or know about Law. So this project's aim to provide a clarification of India Law with the implementation of RAG based LLM.
app.py CHANGED
@@ -1,12 +1,10 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -39,9 +37,6 @@ def respond(
39
  response += token
40
  yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import spaces
4
 
 
 
 
5
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
6
 
7
+ @spaces.GPU
8
  def respond(
9
  message,
10
  history: list[tuple[str, str]],
 
37
  response += token
38
  yield response
39
 
 
 
 
40
  demo = gr.ChatInterface(
41
  respond,
42
  additional_inputs=[
requirements.txt CHANGED
@@ -1 +1,2 @@
1
- huggingface_hub==0.22.2
 
 
1
+ huggingface_hub==0.22.2
2
+ spaces