# load important libraries from datasets import load_dataset from transformers import AutoModelForSeq2SeqLM from transformers import AutoTokenizer from transformers import GenerationConfig import streamlit as st # load the dialog summarization dataset huggingface_dataset_name = "knkarthick/dialogsum" dataset = load_dataset(huggingface_dataset_name) # load the google FLAN-T5 base model model_name='google/flan-t5-base' model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # load the specific tokenizer for above model tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) # initialize variables example_indices_full = [40] example_indices_full_few_shot = [40, 80, 120, 200, 220] dash_line = '-'.join('' for x in range(100)) # zero_shot inference def zero_shot(my_example): prompt = f""" Dialogue: {my_example} What was going on? """ inputs = tokenizer(prompt, return_tensors='pt') output = tokenizer.decode( model.generate( inputs["input_ids"], max_new_tokens=50 )[0], skip_special_tokens=True ) return output # this prompt template will be used def my_prompt(example_indices, my_example): prompt = '' for index in example_indices: dialogue = dataset['test'][index]['dialogue'] summary = dataset['test'][index]['summary'] prompt += f""" Dialogue: {dialogue} What was going on? {summary} """ prompt += f""" Dialogue: {my_example} What was going on? """ return prompt # this is for one_shot def one_shot(example_indices_full,my_example): inputs = tokenizer(my_prompt(example_indices_full,my_example), return_tensors='pt') output = tokenizer.decode( model.generate( inputs["input_ids"], max_new_tokens=50 )[0], skip_special_tokens=True ) return output # few_shot def few_shot(example_indices_full_few_shot,my_example): inputs = tokenizer(my_prompt(example_indices_full_few_shot,my_example), return_tensors='pt') output = tokenizer.decode( model.generate( inputs["input_ids"], max_new_tokens=50 )[0], skip_special_tokens=True ) return output st.title("Google FLAN-T5(Base) Prompt Engineered Model: Zero-shot, Single-shot, and Few-shot") my_example = st.text_area("Enter dialogues to summarize", value="Maaz: Jalal how are you?\nJalal: I am good thank you.\nMaaz: Are you going to school tomorrow.\nJalal: No bro i am not going to school tomorrow.\nMaaz: why?\nJalal: I am working on a project, are you want to work with me on my project?\nMaaz: sorry, i have to go to school.") if st.button("Run"): zero_shot_output = zero_shot(my_example) one_shot_output = one_shot(example_indices_full, my_example) few_shot_output = few_shot(example_indices_full_few_shot, my_example) st.header("**Comparison of Outputs**") # Create three columns col1, col2, col3 = st.columns(3) # Display outputs in respective columns with col1: st.subheader("Zero-shot Output") st.write(zero_shot_output) with col2: st.subheader("One-shot Output") st.write(one_shot_output) with col3: st.subheader("Few-shot Output") st.write(few_shot_output)