Spaces:
Sleeping
Sleeping
File size: 954 Bytes
8bbfca2 50f8f6a 8bbfca2 cb2f735 50f8f6a 4a60b92 3e7bb7b 35e8378 50f8f6a a78c002 cb2f735 a78c002 50f8f6a a78c002 cb2f735 a78c002 50f8f6a cb2f735 50f8f6a cb2f735 50f8f6a cb2f735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import streamlit as st
from langchain.llms import HuggingFaceHub
# Function to return the response
def generate_answer(query):
llm = HuggingFaceHub(
model_class="goliath-120b.Q4_K_M.gguf",
repo_id="alpindale/goliath-120b",
model_kwargs={"temperature": 0.5, "max_length": 64, "max_new_tokens": 512},
task = "text2text-generation"
)
prompt = f"""
You are a helpful AI assistant.
USER:
{query}
ASSISTANT:
"""
result = llm.predict(prompt)
return result
# App UI starts here
st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
st.header("LangChain Demo")
# Gets User Input
def get_text():
input_text = st.text_input("You: ", key="input")
return input_text
user_input = get_text()
response = generate_answer(user_input)
submit = st.button("Generate")
# If the button is clicked
if submit:
st.subheader("Answer:")
st.write(response) |