Spaces:
Sleeping
Sleeping
File size: 1,025 Bytes
8bbfca2 50f8f6a 8bbfca2 a78c002 50f8f6a a78c002 50f8f6a a78c002 50f8f6a a78c002 50f8f6a a78c002 50f8f6a a78c002 50f8f6a a78c002 50f8f6a a78c002 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
from langchain.llms import HuggingFaceHub
#Function to return the response
def generate_answer(query):
llm = HuggingFaceHub(
repo_id = "huggingfaceh4/zephyr-7b-alpha",
model_kwargs={"temperature": 0.5, "max_length": 64,"max_new_tokens":512}
)
prompt = f"""
You are a doctor assistant trained to provide medical advice and support. Please respond with empathy and consider the patient's well-being.
</s>
{query}</s>
"""
result = llm.predict(prompt)
return result
#App UI starts here
st.set_page_config(page_title = "LangChain Demo", page_icon = ":robot:")
st.header("LangChain Demo")
#Gets User Input
def get_text():
input_text = st.text_input("You: ", key="input")
return input_text
user_input = get_text()
response = generate_answer(user_input)
submit = st.button("Generate")
#If the button clicked
if submit:
st.subheader("Answer: ")
st.write(response)
|