import streamlit as st from langchain.llms import HuggingFaceHub #Function to return the response def generate_answer(query): llm = HuggingFaceHub( repo_id = "TheBloke/goliath-120b-GGUF", model_kwargs={"temperature": 0.5, "max_length": 64,"max_new_tokens":512} ) prompt = f""" A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. USER: Hi ASSISTANT: Hello! How can I help you today? If you have any questions or need assistance, feel free to ask. """ result = llm.predict(prompt) return result #App UI starts here st.set_page_config(page_title = "LangChain Demo", page_icon = ":robot:") st.header("LangChain Demo") #Gets User Input def get_text(): input_text = st.text_input("You: ", key="input") return input_text user_input = get_text() response = generate_answer(user_input) submit = st.button("Generate") #If the button clicked if submit: st.subheader("Answer: ") st.write(response)