import streamlit as st from langchain.llms import HuggingFaceHub # Function to return the response def generate_answer(query): llm = HuggingFaceHub( repo_id="TheBloke/goliath-120b-GGUF", model_kwargs={"temperature": 0.5, "max_length": 64, "max_new_tokens": 512} ) prompt = f""" You are a helpful AI assistant. USER: {query} ASSISTANT: """ result = llm.predict(prompt) return result # App UI starts here st.set_page_config(page_title="LangChain Demo", page_icon=":robot:") st.header("LangChain Demo") # Gets User Input def get_text(): input_text = st.text_input("You: ", key="input") return input_text user_input = get_text() response = generate_answer(user_input) submit = st.button("Generate") # If the button is clicked if submit: st.subheader("Answer:") st.write(response)