|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
|
|
st.title('Uber pickups in NYC') |
|
|
|
DATE_COLUMN = 'date/time' |
|
DATA_URL = ('https://s3-us-west-2.amazonaws.com/' |
|
'streamlit-demo-data/uber-raw-data-sep14.csv.gz') |
|
|
|
@st.cache_data |
|
def load_data(nrows): |
|
data = pd.read_csv(DATA_URL, nrows=nrows) |
|
lowercase = lambda x: str(x).lower() |
|
data.rename(lowercase, axis='columns', inplace=True) |
|
data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN]) |
|
return data |
|
|
|
data_load_state = st.text('Loading data...') |
|
data = load_data(10000) |
|
data_load_state.text("Done! (using st.cache_data)") |
|
|
|
if st.checkbox('Show raw data'): |
|
st.subheader('Raw data') |
|
st.write(data) |
|
|
|
st.subheader('Number of pickups by hour') |
|
hist_values = np.histogram(data[DATE_COLUMN].dt.hour, bins=24, range=(0,24))[0] |
|
st.bar_chart(hist_values) |
|
|
|
|
|
hour_to_filter = st.slider('hour', 0, 23, 17) |
|
filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter] |
|
|
|
st.subheader('Map of all pickups at %s:00' % hour_to_filter) |
|
st.map(filtered_data) |