File size: 16,273 Bytes
75309ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67b3290
 
75309ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc95199
75309ed
 
 
67b3290
75309ed
67b3290
75309ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e71eca9
75309ed
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import json
import logging
from termcolor import colored
from datetime import datetime
from typing import Any, Dict, Union, List
from typing import TypedDict, Annotated
from langgraph.graph.message import add_messages
from agents.base_agent import BaseAgent
from utils.read_markdown import read_markdown_file
from tools.advanced_scraper import scraper
from tools.google_serper import serper_search
from utils.logging import log_function, setup_logging
from utils.message_handling import get_ai_message_contents
from prompt_engineering.guided_json_lib import guided_json_search_query, guided_json_best_url, guided_json_router_decision

setup_logging(level=logging.DEBUG)
logger = logging.getLogger(__name__)

class MessageDict(TypedDict):
    role: str
    content: str

class State(TypedDict):
    meta_prompt: Annotated[List[MessageDict], add_messages]
    conversation_history: Annotated[List[dict], add_messages]
    user_input: Annotated[List[str], add_messages]
    router_decision: bool
    chat_limit: int
    chat_finished: bool
    recursion_limit: int

state: State = {
    "meta_prompt": [],
    "conversation_history": [],
    "user_input": [],
    "router_decision": None,
    "chat_limit": None,
    "chat_finished": False,
    "recursion_limit": None
}

# class State(TypedDict):
#     meta_prompt: Annotated[List[MessageDict], add_messages]
#     conversation_history: Annotated[List[dict], add_messages]
#     user_input: Annotated[List[str], add_messages]
#     router_decision: bool
#     chat_limit: int
#     chat_finished: bool

# state: State = {
#     "meta_prompt": [],
#     "conversation_history": [],
#     "user_input": [],
#     "router_decision": None,
#     "chat_limit": None,
#     "chat_finished": False
# }

# def chat_counter(state: State) -> State:
#     chat_limit = state.get("chat_limit")
#     if chat_limit is None:
#         chat_limit = 0
#     chat_limit += 1
#     state["chat_limit"] = chat_limit
#     return state

# def chat_counter(state: State) -> State:
#     chat_limit = state.get("chat_limit")
#     if chat_limit is None:
#         chat_limit = 0
#     chat_limit += 1
#     state["chat_limit"] = chat_limit
#     return chat_limit

def routing_function(state: State) -> str:
    if state["router_decision"]:
        return "no_tool_expert"
    else:
        return "tool_expert"

def set_chat_finished(state: State) -> bool:
    state["chat_finished"] = True
    final_response = state["meta_prompt"][-1].content
    print(colored(f"\n\n Meta Agent 🧙‍♂️: {final_response}", 'cyan'))

    return state

class MetaExpert(BaseAgent[State]):
    def __init__(self, model: str = None, server: str = None, temperature: float = 0, 
                 model_endpoint: str = None, stop: str = None):
        super().__init__(model, server, temperature, model_endpoint, stop)
        self.llm = self.get_llm(json_model=False)

    def get_prompt(self, state:None) -> str:
        system_prompt = read_markdown_file('prompt_engineering/meta_prompt.md')
        return system_prompt
        
    def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, List[MessageDict]]:
        user_input = None
        updates_conversation_history = {
            "meta_prompt": [
                {"role": "user", "content": f"{user_input}"},
                {"role": "assistant", "content": str(response)}

            ]
        }
        return updates_conversation_history
    
    @log_function(logger)
    def get_conv_history(self, state: State) -> str:
        conversation_history = state.get("conversation_history", [])
        expert_message_history = get_ai_message_contents(conversation_history)
        print(f"Expert Data Collected: {expert_message_history}")
        expert_message_history = f"Expert Data Collected: <Ex>{expert_message_history}</Ex>"
        return expert_message_history
    
    def get_user_input(self) -> str:
        user_input = input("Enter your query: ")
        return user_input
    
    def get_guided_json(self, state: State) -> Dict[str, Any]:
        pass

    def use_tool(self) -> Any:
        pass

    @log_function(logger)
    def run(self, state: State) -> State:

        # counter = chat_counter(state)
        user_input = state.get("user_input")
        state = self.invoke(state=state, user_input=user_input)
        
        return state
    

class NoToolExpert(BaseAgent[State]):
    def __init__(self, model: str = None, server: str = None, temperature: float = 0, 
                 model_endpoint: str = None, stop: str = None):
        super().__init__(model, server, temperature, model_endpoint, stop)
        self.llm = self.get_llm(json_model=False)

    def get_prompt(self, state) -> str:
        # print(f"\nn{state}\n")
        system_prompt = state["meta_prompt"][-1].content
        return system_prompt
        
    def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, Union[str, dict]]:
        updates_conversation_history = {
            "conversation_history": [
                {"role": "user", "content": user_input},
                {"role": "assistant", "content": f"{str(response)}"}

            ]
        }
        return updates_conversation_history
    
    def get_conv_history(self, state: State) -> str:
        pass
    
    def get_user_input(self) -> str:
        pass
    
    def get_guided_json(self, state: State) -> Dict[str, Any]:
        pass

    def use_tool(self) -> Any:
        pass


    # @log_function(logger)
    def run(self, state: State) -> State:
        # chat_counter(state)
        user_input = state["meta_prompt"][1].content
        state = self.invoke(state=state, user_input=user_input)        
        return state
    

class ToolExpert(BaseAgent[State]):
    def __init__(self, model: str = None, server: str = None, temperature: float = 0, 
                 model_endpoint: str = None, stop: str = None):
        super().__init__(model, server, temperature, model_endpoint, stop)
        self.llm = self.get_llm(json_model=False)

    def get_prompt(self, state) -> str:
        system_prompt = state["meta_prompt"][-1].content
        return system_prompt
        
    def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, Union[str, dict]]:
        updates_conversation_history = {
            "conversation_history": [
                {"role": "user", "content": user_input},
                {"role": "assistant", "content": f"{str(response)}"}

            ]
        }
        return updates_conversation_history
    
    def get_conv_history(self, state: State) -> str:
        pass
    
    def get_user_input(self) -> str:
        pass
    
    def get_guided_json(self, state: State) -> Dict[str, Any]:
        pass
 
    # Use Serper to search
    def use_tool(self, mode: str, tool_input: str, doc_type: str = None) -> Any:
        if mode == "serper":
            results = serper_search(tool_input, self.location)
            return results
        elif mode == "scraper":
            results = scraper(tool_input, doc_type)
            return results

    # @log_function(logger)
    def run(self, state: State) -> State:

        # counter = chat_counter(state)

        refine_query_template = """
            Given the response from your manager.

            # Response from Manager
            {manager_response}

            **Return the following JSON:**


            {{"search_query": The refined google search engine query that aligns with the response from your managers.}}

        """

        best_url_template = """
            Given the serper results, and the instructions from your manager. Select the best URL

            # Manger Instructions
            {manager_response}

            # Serper Results
            {serper_results}

            **Return the following JSON:**


            {{"best_url": The URL of the serper results that aligns most with the instructions from your manager.,
            "pdf": A boolean value indicating whether the URL is a PDF or not. This should be True if the URL is a PDF, and False otherwise.}}

        """

        user_input = state["meta_prompt"][-1].content
        state = self.invoke(state=state, user_input=user_input)
        full_query = state["conversation_history"][-1].get("content")

        refine_query = self.get_llm(json_model=True)
        refine_prompt = refine_query_template.format(manager_response=full_query)
        input = [
                {"role": "user", "content": full_query},
                {"role": "assistant", "content": f"system_prompt:{refine_prompt}"}

            ]
        
        if self.server == 'vllm':
            guided_json = guided_json_search_query
            refined_query = refine_query.invoke(input, guided_json)
        else:
            refined_query = refine_query.invoke(input)

        refined_query_json = json.loads(refined_query)
        refined_query = refined_query_json.get("search_query")
        serper_response = self.use_tool("serper", refined_query)

        best_url = self.get_llm(json_model=True)
        best_url_prompt = best_url_template.format(manager_response=full_query, serper_results=serper_response)
        input = [
                {"role": "user", "content": serper_response},
                {"role": "assistant", "content": f"system_prompt:{best_url_prompt}"}

            ]
        
        if self.server == 'vllm':
            guided_json = guided_json_best_url
            best_url = best_url.invoke(input, guided_json)
        else:
            best_url = best_url.invoke(input)

        best_url_json = json.loads(best_url)
        best_url = best_url_json.get("best_url")

        doc_type = best_url_json.get("pdf")

        if doc_type == "True" or doc_type == True:
            doc_type = "pdf"
        else:
            doc_type = "html"

        scraper_response = self.use_tool("scraper", best_url, doc_type)
        updates = self.process_response(scraper_response, user_input)

        for key, value in updates.items():
            state = self.update_state(key, value, state)
                
        return state
    
class Router(BaseAgent[State]):
    def __init__(self, model: str = None, server: str = None, temperature: float = 0, 
                 model_endpoint: str = None, stop: str = None):
        super().__init__(model, server, temperature, model_endpoint, stop)
        self.llm = self.get_llm(json_model=True)

    def get_prompt(self, state) -> str:
        system_prompt = state["meta_prompt"][-1].content
        return system_prompt
        
    def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, Union[str, dict]]:
        updates_conversation_history = {
            "router_decision": [
                {"role": "user", "content": user_input},
                {"role": "assistant", "content": f"<Ex>{str(response)}</Ex> Todays date is {datetime.now()}"}

            ]
        }
        return updates_conversation_history
    
    def get_conv_history(self, state: State) -> str:
        pass
    
    def get_user_input(self) -> str:
        pass
    
    def get_guided_json(self, state: State) -> Dict[str, Any]:
        pass

    def use_tool(self, tool_input: str, mode: str) -> Any:
        pass

    # @log_function(logger)
    def run(self, state: State) -> State:

        # router_template = """
        #     Given these instructions from your manager.

        #     # Response from Manager
        #     {manager_response}

        #     **Return the following JSON:**

        #     {{""router_decision: Return the next agent to pass control to.}}

        #     **strictly** adhere to these **guidelines** for routing.
        #     If your manager's response suggests a tool might be required to answer the query, return "tool_expert".
        #     If your manager's response suggests no tool is required to answer the query, return "no_tool_expert".
        #     If your manager's response suggest they have provided a final answer, return "end_chat".

        # """

        # chat_counter(state)
        router_template = """
            Given these instructions from your manager.

            # Response from Manager
            {manager_response}

            **Return the following JSON:**

            {{""router_decision: Return the next agent to pass control to.}}

            **strictly** adhere to these **guidelines** for routing.
            If your manager's response suggests the Expert Internet Researcher or the suggests the internet might be required, return "tool_expert".
            If your manager's response suggests that the internet is not required, return "no_tool_expert".
            If your manager's response suggest they have provided a final answer, return "end_chat".

        """
        system_prompt = router_template.format(manager_response=state["meta_prompt"][-1].content)
        input = [
                {"role": "user", "content": ""},
                {"role": "assistant", "content": f"system_prompt:{system_prompt}"}

            ]
        router = self.get_llm(json_model=True)

        if self.server == 'vllm':
            guided_json = guided_json_router_decision
            router_response = router.invoke(input, guided_json)
        else:
            router_response = router.invoke(input)

        router_response = json.loads(router_response)
        router_response = router_response.get("router_decision")
        state = self.update_state("router_decision", router_response, state)
        
        return state
    
# Example usage
if __name__ == "__main__":
    from langgraph.graph import StateGraph


    # For Claude
    agent_kwargs = {
        "model": "claude-3-haiku-20240307",
        "server": "claude",
        "temperature": 0.5
    }
   
    agent_kwargs = {
        "model": "gpt-4o-mini",
        "server": "openai",
        "temperature": 0.1
    }

    # Ollama
    # agent_kwargs = {
    #     "model": "phi3:instruct",
    #     "server": "ollama",
    #     "temperature": 0.5
    # }

    # Groq
    # agent_kwargs = {
    #     "model": "mixtral-8x7b-32768",
    #     "server": "groq",
    #     "temperature": 0.5
    # }

    # # Gemnin - Not currently working, I will be debugging this soon.
    # agent_kwargs = {
    #     "model": "gemini-1.5-pro",
    #     "server": "gemini",
    #     "temperature": 0.5
    # }

    # # Vllm
    # agent_kwargs = {
    #     "model": "meta-llama/Meta-Llama-3-70B-Instruct",
    #     "server": "vllm",
    #     "temperature": 0.5,
    #     "model_endpoint": "https://vpzatdgopr2pmx-8000.proxy.runpod.net/",
    # }

    tools_router_agent_kwargs = agent_kwargs.copy()
    tools_router_agent_kwargs["temperature"] = 0

    def routing_function(state: State) -> str:
        decision = state["router_decision"]
        print(colored(f"\n\n Routing function called. Decision: {decision}", 'red'))
        return decision

    graph = StateGraph(State)

    graph.add_node("meta_expert", lambda state: MetaExpert(**agent_kwargs).run(state=state))
    graph.add_node("router", lambda state: Router(**tools_router_agent_kwargs).run(state=state))
    graph.add_node("no_tool_expert", lambda state: NoToolExpert(**agent_kwargs).run(state=state))
    graph.add_node("tool_expert", lambda state: ToolExpert(**tools_router_agent_kwargs).run(state=state))
    graph.add_node("end_chat", lambda state: set_chat_finished(state))

    graph.set_entry_point("meta_expert")
    graph.set_finish_point("end_chat")

    graph.add_edge("meta_expert", "router")
    graph.add_edge("tool_expert", "meta_expert")
    graph.add_edge("no_tool_expert", "meta_expert")
    graph.add_conditional_edges(
        "router",
        lambda state: routing_function(state),
    )
    workflow = graph.compile()

    while True:
        query = input("Ask me anything: ")
        if query.lower() == "exit":
            break

        # current_time = datetime.now()
        recursion_limit = 30
        state["recursion_limit"] = recursion_limit
        state["user_input"] = query
        limit = {"recursion_limit": recursion_limit}

        for event in workflow.stream(state, limit):
            pass