Spaces:
Sleeping
Sleeping
File size: 16,273 Bytes
75309ed 67b3290 75309ed fc95199 75309ed 67b3290 75309ed 49bd427 75309ed e71eca9 75309ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import json
import logging
from termcolor import colored
from datetime import datetime
from typing import Any, Dict, Union, List
from typing import TypedDict, Annotated
from langgraph.graph.message import add_messages
from agents.base_agent import BaseAgent
from utils.read_markdown import read_markdown_file
from tools.advanced_scraper import scraper
from tools.google_serper import serper_search
from utils.logging import log_function, setup_logging
from utils.message_handling import get_ai_message_contents
from prompt_engineering.guided_json_lib import guided_json_search_query, guided_json_best_url, guided_json_router_decision
setup_logging(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class MessageDict(TypedDict):
role: str
content: str
class State(TypedDict):
meta_prompt: Annotated[List[MessageDict], add_messages]
conversation_history: Annotated[List[dict], add_messages]
user_input: Annotated[List[str], add_messages]
router_decision: bool
chat_limit: int
chat_finished: bool
recursion_limit: int
state: State = {
"meta_prompt": [],
"conversation_history": [],
"user_input": [],
"router_decision": None,
"chat_limit": None,
"chat_finished": False,
"recursion_limit": None
}
# class State(TypedDict):
# meta_prompt: Annotated[List[MessageDict], add_messages]
# conversation_history: Annotated[List[dict], add_messages]
# user_input: Annotated[List[str], add_messages]
# router_decision: bool
# chat_limit: int
# chat_finished: bool
# state: State = {
# "meta_prompt": [],
# "conversation_history": [],
# "user_input": [],
# "router_decision": None,
# "chat_limit": None,
# "chat_finished": False
# }
# def chat_counter(state: State) -> State:
# chat_limit = state.get("chat_limit")
# if chat_limit is None:
# chat_limit = 0
# chat_limit += 1
# state["chat_limit"] = chat_limit
# return state
# def chat_counter(state: State) -> State:
# chat_limit = state.get("chat_limit")
# if chat_limit is None:
# chat_limit = 0
# chat_limit += 1
# state["chat_limit"] = chat_limit
# return chat_limit
def routing_function(state: State) -> str:
if state["router_decision"]:
return "no_tool_expert"
else:
return "tool_expert"
def set_chat_finished(state: State) -> bool:
state["chat_finished"] = True
final_response = state["meta_prompt"][-1].content
print(colored(f"\n\n Meta Agent 🧙♂️: {final_response}", 'cyan'))
return state
class MetaExpert(BaseAgent[State]):
def __init__(self, model: str = None, server: str = None, temperature: float = 0,
model_endpoint: str = None, stop: str = None):
super().__init__(model, server, temperature, model_endpoint, stop)
self.llm = self.get_llm(json_model=False)
def get_prompt(self, state:None) -> str:
system_prompt = read_markdown_file('prompt_engineering/meta_prompt.md')
return system_prompt
def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, List[MessageDict]]:
user_input = None
updates_conversation_history = {
"meta_prompt": [
{"role": "user", "content": f"{user_input}"},
{"role": "assistant", "content": str(response)}
]
}
return updates_conversation_history
@log_function(logger)
def get_conv_history(self, state: State) -> str:
conversation_history = state.get("conversation_history", [])
expert_message_history = get_ai_message_contents(conversation_history)
print(f"Expert Data Collected: {expert_message_history}")
expert_message_history = f"Expert Data Collected: <Ex>{expert_message_history}</Ex>"
return expert_message_history
def get_user_input(self) -> str:
user_input = input("Enter your query: ")
return user_input
def get_guided_json(self, state: State) -> Dict[str, Any]:
pass
def use_tool(self) -> Any:
pass
@log_function(logger)
def run(self, state: State) -> State:
# counter = chat_counter(state)
user_input = state.get("user_input")
state = self.invoke(state=state, user_input=user_input)
return state
class NoToolExpert(BaseAgent[State]):
def __init__(self, model: str = None, server: str = None, temperature: float = 0,
model_endpoint: str = None, stop: str = None):
super().__init__(model, server, temperature, model_endpoint, stop)
self.llm = self.get_llm(json_model=False)
def get_prompt(self, state) -> str:
# print(f"\nn{state}\n")
system_prompt = state["meta_prompt"][-1].content
return system_prompt
def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, Union[str, dict]]:
updates_conversation_history = {
"conversation_history": [
{"role": "user", "content": user_input},
{"role": "assistant", "content": f"{str(response)}"}
]
}
return updates_conversation_history
def get_conv_history(self, state: State) -> str:
pass
def get_user_input(self) -> str:
pass
def get_guided_json(self, state: State) -> Dict[str, Any]:
pass
def use_tool(self) -> Any:
pass
# @log_function(logger)
def run(self, state: State) -> State:
# chat_counter(state)
user_input = state["meta_prompt"][1].content
state = self.invoke(state=state, user_input=user_input)
return state
class ToolExpert(BaseAgent[State]):
def __init__(self, model: str = None, server: str = None, temperature: float = 0,
model_endpoint: str = None, stop: str = None):
super().__init__(model, server, temperature, model_endpoint, stop)
self.llm = self.get_llm(json_model=False)
def get_prompt(self, state) -> str:
system_prompt = state["meta_prompt"][-1].content
return system_prompt
def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, Union[str, dict]]:
updates_conversation_history = {
"conversation_history": [
{"role": "user", "content": user_input},
{"role": "assistant", "content": f"{str(response)}"}
]
}
return updates_conversation_history
def get_conv_history(self, state: State) -> str:
pass
def get_user_input(self) -> str:
pass
def get_guided_json(self, state: State) -> Dict[str, Any]:
pass
# Use Serper to search
def use_tool(self, mode: str, tool_input: str, doc_type: str = None) -> Any:
if mode == "serper":
results = serper_search(tool_input, self.location)
return results
elif mode == "scraper":
results = scraper(tool_input, doc_type)
return results
# @log_function(logger)
def run(self, state: State) -> State:
# counter = chat_counter(state)
refine_query_template = """
Given the response from your manager.
# Response from Manager
{manager_response}
**Return the following JSON:**
{{"search_query": The refined google search engine query that aligns with the response from your managers.}}
"""
best_url_template = """
Given the serper results, and the instructions from your manager. Select the best URL
# Manger Instructions
{manager_response}
# Serper Results
{serper_results}
**Return the following JSON:**
{{"best_url": The URL of the serper results that aligns most with the instructions from your manager.,
"pdf": A boolean value indicating whether the URL is a PDF or not. This should be True if the URL is a PDF, and False otherwise.}}
"""
user_input = state["meta_prompt"][-1].content
state = self.invoke(state=state, user_input=user_input)
full_query = state["conversation_history"][-1].get("content")
refine_query = self.get_llm(json_model=True)
refine_prompt = refine_query_template.format(manager_response=full_query)
input = [
{"role": "user", "content": full_query},
{"role": "assistant", "content": f"system_prompt:{refine_prompt}"}
]
if self.server == 'vllm':
guided_json = guided_json_search_query
refined_query = refine_query.invoke(input, guided_json)
else:
refined_query = refine_query.invoke(input)
refined_query_json = json.loads(refined_query)
refined_query = refined_query_json.get("search_query")
serper_response = self.use_tool("serper", refined_query)
best_url = self.get_llm(json_model=True)
best_url_prompt = best_url_template.format(manager_response=full_query, serper_results=serper_response)
input = [
{"role": "user", "content": serper_response},
{"role": "assistant", "content": f"system_prompt:{best_url_prompt}"}
]
if self.server == 'vllm':
guided_json = guided_json_best_url
best_url = best_url.invoke(input, guided_json)
else:
best_url = best_url.invoke(input)
best_url_json = json.loads(best_url)
best_url = best_url_json.get("best_url")
doc_type = best_url_json.get("pdf")
if doc_type == "True" or doc_type == True:
doc_type = "pdf"
else:
doc_type = "html"
scraper_response = self.use_tool("scraper", best_url, doc_type)
updates = self.process_response(scraper_response, user_input)
for key, value in updates.items():
state = self.update_state(key, value, state)
return state
class Router(BaseAgent[State]):
def __init__(self, model: str = None, server: str = None, temperature: float = 0,
model_endpoint: str = None, stop: str = None):
super().__init__(model, server, temperature, model_endpoint, stop)
self.llm = self.get_llm(json_model=True)
def get_prompt(self, state) -> str:
system_prompt = state["meta_prompt"][-1].content
return system_prompt
def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, Union[str, dict]]:
updates_conversation_history = {
"router_decision": [
{"role": "user", "content": user_input},
{"role": "assistant", "content": f"<Ex>{str(response)}</Ex> Todays date is {datetime.now()}"}
]
}
return updates_conversation_history
def get_conv_history(self, state: State) -> str:
pass
def get_user_input(self) -> str:
pass
def get_guided_json(self, state: State) -> Dict[str, Any]:
pass
def use_tool(self, tool_input: str, mode: str) -> Any:
pass
# @log_function(logger)
def run(self, state: State) -> State:
# router_template = """
# Given these instructions from your manager.
# # Response from Manager
# {manager_response}
# **Return the following JSON:**
# {{""router_decision: Return the next agent to pass control to.}}
# **strictly** adhere to these **guidelines** for routing.
# If your manager's response suggests a tool might be required to answer the query, return "tool_expert".
# If your manager's response suggests no tool is required to answer the query, return "no_tool_expert".
# If your manager's response suggest they have provided a final answer, return "end_chat".
# """
# chat_counter(state)
router_template = """
Given these instructions from your manager.
# Response from Manager
{manager_response}
**Return the following JSON:**
{{""router_decision: Return the next agent to pass control to.}}
**strictly** adhere to these **guidelines** for routing.
If your manager's response suggests the Expert Internet Researcher or the suggests the internet might be required, return "tool_expert".
If your manager's response suggests that the internet is not required, return "no_tool_expert".
If your manager's response suggest they have provided a final answer, return "end_chat".
"""
system_prompt = router_template.format(manager_response=state["meta_prompt"][-1].content)
input = [
{"role": "user", "content": ""},
{"role": "assistant", "content": f"system_prompt:{system_prompt}"}
]
router = self.get_llm(json_model=True)
if self.server == 'vllm':
guided_json = guided_json_router_decision
router_response = router.invoke(input, guided_json)
else:
router_response = router.invoke(input)
router_response = json.loads(router_response)
router_response = router_response.get("router_decision")
state = self.update_state("router_decision", router_response, state)
return state
# Example usage
if __name__ == "__main__":
from langgraph.graph import StateGraph
# For Claude
agent_kwargs = {
"model": "claude-3-haiku-20240307",
"server": "claude",
"temperature": 0.5
}
agent_kwargs = {
"model": "gpt-4o-mini",
"server": "openai",
"temperature": 0.1
}
# Ollama
# agent_kwargs = {
# "model": "phi3:instruct",
# "server": "ollama",
# "temperature": 0.5
# }
# Groq
# agent_kwargs = {
# "model": "mixtral-8x7b-32768",
# "server": "groq",
# "temperature": 0.5
# }
# # Gemnin - Not currently working, I will be debugging this soon.
# agent_kwargs = {
# "model": "gemini-1.5-pro",
# "server": "gemini",
# "temperature": 0.5
# }
# # Vllm
# agent_kwargs = {
# "model": "meta-llama/Meta-Llama-3-70B-Instruct",
# "server": "vllm",
# "temperature": 0.5,
# "model_endpoint": "https://vpzatdgopr2pmx-8000.proxy.runpod.net/",
# }
tools_router_agent_kwargs = agent_kwargs.copy()
tools_router_agent_kwargs["temperature"] = 0
def routing_function(state: State) -> str:
decision = state["router_decision"]
print(colored(f"\n\n Routing function called. Decision: {decision}", 'red'))
return decision
graph = StateGraph(State)
graph.add_node("meta_expert", lambda state: MetaExpert(**agent_kwargs).run(state=state))
graph.add_node("router", lambda state: Router(**tools_router_agent_kwargs).run(state=state))
graph.add_node("no_tool_expert", lambda state: NoToolExpert(**agent_kwargs).run(state=state))
graph.add_node("tool_expert", lambda state: ToolExpert(**tools_router_agent_kwargs).run(state=state))
graph.add_node("end_chat", lambda state: set_chat_finished(state))
graph.set_entry_point("meta_expert")
graph.set_finish_point("end_chat")
graph.add_edge("meta_expert", "router")
graph.add_edge("tool_expert", "meta_expert")
graph.add_edge("no_tool_expert", "meta_expert")
graph.add_conditional_edges(
"router",
lambda state: routing_function(state),
)
workflow = graph.compile()
while True:
query = input("Ask me anything: ")
if query.lower() == "exit":
break
# current_time = datetime.now()
recursion_limit = 30
state["recursion_limit"] = recursion_limit
state["user_input"] = query
limit = {"recursion_limit": recursion_limit}
for event in workflow.stream(state, limit):
pass |