Spaces:
Sleeping
Sleeping
import numpy as np | |
import pandas as pd | |
import os | |
import matplotlib.pyplot as plt | |
import random | |
import keras | |
import tensorflow as tf | |
from transformers import AutoTokenizer | |
from transformers import TFDistilBertModel, AutoConfig | |
import streamlit as st | |
from twitter import twitter_model | |
def main(): | |
st.header('Twitter disater detector') | |
directory = os.getcwd() | |
weights_path= directory+"/custom_model.keras" | |
model_test= twitter_model(weights_path) | |
input_text=st.text_input("Please enter your sentence:", "type a word") | |
prediction= np.round(model_test.predict(input_text)) | |
disaster= False | |
if prediction==1: | |
disaster= True | |
if disaster: | |
st.write("the text: '",input_text, "' means there is a disaster" ) | |
else: | |
st.write("the text: ",input_text, "means there is NO disaster" ) | |
if __name__ == '__main__': | |
main() |