import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import random import keras import tensorflow as tf from transformers import AutoTokenizer from transformers import TFDistilBertModel, AutoConfig import streamlit as st from twitter import twitter_model def main(): st.header('Twitter disater detector') directory = os.getcwd() weights_path= directory+"/custom_model.keras" model_test= twitter_model(weights_path) input_text=st.text_input("Please enter your sentence:", "type a word") prediction= np.round(model_test.predict(input_text)) disaster= False if prediction==1: disaster= True if disaster: st.write("the text: '",input_text, "' means there is a disaster" ) else: st.write("the text: ",input_text, "means there is NO disaster" ) if __name__ == '__main__': main()