File size: 8,549 Bytes
46e0dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import sys
from transformers import RobertaTokenizer, BertTokenizer
from tqdm import tqdm  # for our progress bar
from transformers import AdamW

import torch
from torch.utils.data import DataLoader

from models.spatial_bert_model import SpatialBertModel
from models.spatial_bert_model import SpatialBertConfig
from models.spatial_bert_model import  SpatialBertForMaskedLM
from datasets.osm_sample_loader import PbfMapDataset
from transformers.models.bert.modeling_bert import BertForMaskedLM

import numpy as np
import argparse 
import pdb


DEBUG = False


def training(args):

    num_workers = args.num_workers
    batch_size = args.batch_size
    epochs = args.epochs
    lr = args.lr #1e-7 # 5e-5
    save_interval = args.save_interval
    max_token_len = args.max_token_len
    distance_norm_factor = args.distance_norm_factor
    spatial_dist_fill=args.spatial_dist_fill
    with_type = args.with_type
    sep_between_neighbors = args.sep_between_neighbors
    freeze_backbone = args.freeze_backbone

    bert_option = args.bert_option
    if_no_spatial_distance = args.no_spatial_distance

    assert bert_option in ['bert-base','bert-large']

    london_file_path = '../data/sql_output/osm-point-london.json'
    california_file_path = '../data/sql_output/osm-point-california.json'

    if args.model_save_dir is None:
        sep_pathstr = '_sep' if sep_between_neighbors else '_nosep' 
        freeze_pathstr = '_freeze' if freeze_backbone else '_nofreeze'
        context_pathstr = '_nocontext' if if_no_spatial_distance else '_withcontext'
        model_save_dir = '/data2/zekun/spatial_bert_weights/mlm_mem_lr' + str("{:.0e}".format(lr)) + sep_pathstr + context_pathstr +'/'+bert_option+ freeze_pathstr + '_mlm_mem_london_california_bsize' + str(batch_size)

        if not os.path.isdir(model_save_dir):
            os.makedirs(model_save_dir)
    else:
        model_save_dir = args.model_save_dir

    
    print('model_save_dir', model_save_dir)
    print('\n')

    if bert_option == 'bert-base':
        bert_model = BertForMaskedLM.from_pretrained('bert-base-uncased')
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
        config = SpatialBertConfig(use_spatial_distance_embedding = not if_no_spatial_distance)
    elif bert_option == 'bert-large':
        bert_model = BertForMaskedLM.from_pretrained('bert-large-uncased')
        tokenizer = BertTokenizer.from_pretrained("bert-large-uncased")
        config = SpatialBertConfig(use_spatial_distance_embedding = not if_no_spatial_distance, hidden_size = 1024, intermediate_size = 4096, num_attention_heads=16, num_hidden_layers=24)
    else:
        raise NotImplementedError


    model = SpatialBertForMaskedLM(config)

    model.load_state_dict(bert_model.state_dict() , strict = False) # load sentence position embedding weights as well
    
    if bert_option == 'bert-large' and freeze_backbone:
        print('freezing backbone weights')
        for param in model.parameters():
            param.requires_grad = False

        for param in  model.cls.parameters(): 
            param.requires_grad = True

        for param in  model.bert.encoder.layer[21].parameters(): 
            param.requires_grad = True
        for param in  model.bert.encoder.layer[22].parameters(): 
            param.requires_grad = True
        for param in  model.bert.encoder.layer[23].parameters(): 
            param.requires_grad = True
        

    london_train_dataset = PbfMapDataset(data_file_path = london_file_path, 
                                        tokenizer = tokenizer, 
                                        max_token_len = max_token_len, 
                                        distance_norm_factor = distance_norm_factor, 
                                        spatial_dist_fill = spatial_dist_fill, 
                                        with_type = with_type,
                                        sep_between_neighbors = sep_between_neighbors, 
                                        label_encoder = None,
                                        mode = None)

    california_train_dataset = PbfMapDataset(data_file_path = california_file_path, 
                                            tokenizer = tokenizer, 
                                            max_token_len = max_token_len, 
                                            distance_norm_factor = distance_norm_factor, 
                                            spatial_dist_fill = spatial_dist_fill, 
                                            with_type = with_type,
                                            sep_between_neighbors = sep_between_neighbors,
                                            label_encoder = None,
                                            mode = None)

    train_dataset = torch.utils.data.ConcatDataset([london_train_dataset, california_train_dataset])


    if DEBUG:
        train_loader = DataLoader(train_dataset, batch_size= batch_size, num_workers=num_workers,
                                shuffle=False, pin_memory=True, drop_last=True)
    else:
        train_loader = DataLoader(train_dataset, batch_size= batch_size, num_workers=num_workers,
                                shuffle=True, pin_memory=True, drop_last=True)


    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    model.to(device)
    model.train()


    # initialize optimizer
    optim = AdamW(model.parameters(), lr = lr)

    print('start training...')

    for epoch in range(epochs):
        # setup loop with TQDM and dataloader
        loop = tqdm(train_loader, leave=True)
        iter = 0
        for batch in loop:
            # initialize calculated gradients (from prev step)
            optim.zero_grad()
            # pull all tensor batches required for training
            input_ids = batch['masked_input'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            position_list_x = batch['norm_lng_list'].to(device)
            position_list_y = batch['norm_lat_list'].to(device)
            sent_position_ids = batch['sent_position_ids'].to(device)

            labels = batch['pseudo_sentence'].to(device)

            outputs = model(input_ids, attention_mask = attention_mask, sent_position_ids = sent_position_ids,
                position_list_x = position_list_x, position_list_y = position_list_y, labels = labels)


            loss = outputs.loss
            loss.backward()
            optim.step()

            loop.set_description(f'Epoch {epoch}')
            loop.set_postfix({'loss':loss.item()})

            if DEBUG:
                print('ep'+str(epoch)+'_' + '_iter'+ str(iter).zfill(5), loss.item() )

            iter += 1

            if iter % save_interval == 0 or iter == loop.total:
                save_path = os.path.join(model_save_dir, 'mlm_mem_keeppos_ep'+str(epoch) + '_iter'+ str(iter).zfill(5) \
                + '_' +str("{:.4f}".format(loss.item())) +'.pth' )
                torch.save(model.state_dict(), save_path)
                print('saving model checkpoint to', save_path)




def main():

    parser = argparse.ArgumentParser()
    parser.add_argument('--num_workers', type=int, default=5)
    parser.add_argument('--batch_size', type=int, default=12)
    parser.add_argument('--epochs', type=int, default=10)
    parser.add_argument('--save_interval', type=int, default=2000)
    parser.add_argument('--max_token_len', type=int, default=300)
    

    parser.add_argument('--lr', type=float, default = 5e-5)
    parser.add_argument('--distance_norm_factor', type=float, default = 0.0001)
    parser.add_argument('--spatial_dist_fill', type=float, default = 20)

    parser.add_argument('--with_type', default=False, action='store_true')
    parser.add_argument('--sep_between_neighbors', default=False, action='store_true')
    parser.add_argument('--freeze_backbone', default=False, action='store_true')
    parser.add_argument('--no_spatial_distance',  default=False, action='store_true')

    parser.add_argument('--bert_option', type=str, default='bert-base')
    parser.add_argument('--model_save_dir', type=str, default=None)
    
                        
    args = parser.parse_args()
    print('\n')
    print(args)
    print('\n')


    # out_dir not None, and out_dir does not exist, then create out_dir
    if args.model_save_dir is not None and not os.path.isdir(args.model_save_dir):
        os.makedirs(args.model_save_dir)

    training(args)

    

if __name__ == '__main__':

    main()