Spaces:
Sleeping
Sleeping
JasonTPhillipsJr
commited on
Commit
•
a2d8109
1
Parent(s):
f411495
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import spacy
|
3 |
import torch
|
4 |
import torch.nn as nn
|
|
|
5 |
from transformers import BertTokenizer, BertModel, AutoConfig
|
6 |
from transformers.models.bert.modeling_bert import BertForMaskedLM
|
7 |
|
@@ -213,11 +214,59 @@ def load_reviews_from_file(file_path):
|
|
213 |
st.error(f"File not found: {file_path}")
|
214 |
return reviews
|
215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
|
|
|
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
|
223 |
#Demo Section
|
|
|
2 |
import spacy
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
+
import pandas as pd
|
6 |
from transformers import BertTokenizer, BertModel, AutoConfig
|
7 |
from transformers.models.bert.modeling_bert import BertForMaskedLM
|
8 |
|
|
|
214 |
st.error(f"File not found: {file_path}")
|
215 |
return reviews
|
216 |
|
217 |
+
# Function to load reviews from a CSV file
|
218 |
+
def load_reviews_from_csv(file_path):
|
219 |
+
try:
|
220 |
+
df = pd.read_csv(file_path)
|
221 |
+
return df
|
222 |
+
except FileNotFoundError:
|
223 |
+
st.error(f"File not found: {file_path}")
|
224 |
+
return None
|
225 |
+
|
226 |
+
# Function to process each review in the CSV and get the model's predictions
|
227 |
+
def process_csv_reviews(df):
|
228 |
+
true_reviews = []
|
229 |
+
for _, row in df.iterrows():
|
230 |
+
review_text = row['review']
|
231 |
+
label = row['label']
|
232 |
+
|
233 |
+
# Get BERT embedding for the review text
|
234 |
+
bert_embedding = get_bert_embedding(review_text.lower())
|
235 |
+
|
236 |
+
# Get SpaBERT embedding for geo-entities
|
237 |
+
spaBert_embedding, _ = processSpatialEntities(review_text, nlp)
|
238 |
+
|
239 |
+
# Concatenate BERT and SpaBERT embeddings
|
240 |
+
combined_embedding = torch.cat((bert_embedding, spaBert_embedding), dim=-1)
|
241 |
+
|
242 |
+
# Get model prediction
|
243 |
+
prediction = get_prediction(combined_embedding)
|
244 |
+
|
245 |
+
# If prediction is "Not Spam" (0), store the review
|
246 |
+
if prediction == 0:
|
247 |
+
true_reviews.append((review_text, label))
|
248 |
+
|
249 |
+
# Convert to a DataFrame for easy display
|
250 |
+
return pd.DataFrame(true_reviews, columns=['Review', 'Label'])
|
251 |
|
252 |
+
st.write("### Process Filtered Reviews CSV")
|
253 |
+
csv_file_path = "models/spabert/datasets/filtered_reviews.csv"
|
254 |
|
255 |
+
if st.button("Process CSV and Find True Reviews"):
|
256 |
+
# Load the CSV file
|
257 |
+
df = load_reviews_from_csv(csv_file_path)
|
258 |
+
|
259 |
+
if df is not None:
|
260 |
+
# Filter reviews predicted to be "Not Spam"
|
261 |
+
true_reviews_df = process_csv_reviews(df)
|
262 |
+
|
263 |
+
if not true_reviews_df.empty:
|
264 |
+
st.write("### Reviews Predicted to be Not Spam:")
|
265 |
+
st.dataframe(true_reviews_df)
|
266 |
+
else:
|
267 |
+
st.write("No reviews were predicted to be Not Spam.")
|
268 |
+
else:
|
269 |
+
st.error("Could not load CSV file.")
|
270 |
|
271 |
|
272 |
#Demo Section
|