Spaces:
Sleeping
Sleeping
JasonTPhillipsJr
commited on
Commit
•
d2568a6
1
Parent(s):
5f6c4ef
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,6 @@ from models.spabert.models.spatial_bert_model import SpatialBertConfig, SpatialB
|
|
8 |
from models.spabert.utils.common_utils import load_spatial_bert_pretrained_weights
|
9 |
from models.spabert.datasets.osm_sample_loader import PbfMapDataset
|
10 |
from torch.utils.data import DataLoader
|
11 |
-
|
12 |
from PIL import Image
|
13 |
|
14 |
device = torch.device('cpu')
|
@@ -117,10 +116,10 @@ def get_bert_embedding(review_text):
|
|
117 |
def get_spaBert_embedding(entity):
|
118 |
entity_index = entity_index_dict.get(entity.lower(), None)
|
119 |
if entity_index is None:
|
120 |
-
st.write("Got Bert embedding for: ", entity)
|
121 |
return get_bert_embedding(entity) #Fallback in-case SpaBERT could not resolve entity to retrieve embedding. Rare-cases only.
|
122 |
else:
|
123 |
-
st.write("Got SpaBert embedding for: ", entity)
|
124 |
return spaBERT_embeddings[entity_index]
|
125 |
|
126 |
|
@@ -143,6 +142,37 @@ def processSpatialEntities(review, nlp):
|
|
143 |
return processed_embedding
|
144 |
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
# Function to read reviews from a text file
|
147 |
def load_reviews_from_file(file_path):
|
148 |
reviews = {}
|
|
|
8 |
from models.spabert.utils.common_utils import load_spatial_bert_pretrained_weights
|
9 |
from models.spabert.datasets.osm_sample_loader import PbfMapDataset
|
10 |
from torch.utils.data import DataLoader
|
|
|
11 |
from PIL import Image
|
12 |
|
13 |
device = torch.device('cpu')
|
|
|
116 |
def get_spaBert_embedding(entity):
|
117 |
entity_index = entity_index_dict.get(entity.lower(), None)
|
118 |
if entity_index is None:
|
119 |
+
#st.write("Got Bert embedding for: ", entity)
|
120 |
return get_bert_embedding(entity) #Fallback in-case SpaBERT could not resolve entity to retrieve embedding. Rare-cases only.
|
121 |
else:
|
122 |
+
#st.write("Got SpaBert embedding for: ", entity)
|
123 |
return spaBERT_embeddings[entity_index]
|
124 |
|
125 |
|
|
|
142 |
return processed_embedding
|
143 |
|
144 |
|
145 |
+
#Discriminator Initialization section
|
146 |
+
class Discriminator(nn.Module):
|
147 |
+
def __init__(self, input_size=512, hidden_sizes=[512], num_labels=2, dropout_rate=0.1):
|
148 |
+
super(Discriminator, self).__init__()
|
149 |
+
self.input_dropout = nn.Dropout(p=dropout_rate)
|
150 |
+
layers = []
|
151 |
+
hidden_sizes = [input_size] + hidden_sizes
|
152 |
+
for i in range(len(hidden_sizes)-1):
|
153 |
+
layers.extend([nn.Linear(hidden_sizes[i], hidden_sizes[i+1]), nn.LeakyReLU(0.2, inplace=True), nn.Dropout(dropout_rate)])
|
154 |
+
|
155 |
+
self.layers = nn.Sequential(*layers) #per il flatten
|
156 |
+
self.logit = nn.Linear(hidden_sizes[-1],num_labels+1) # +1 for the probability of this sample being fake/real.
|
157 |
+
self.softmax = nn.Softmax(dim=-1)
|
158 |
+
|
159 |
+
def forward(self, input_rep):
|
160 |
+
input_rep = self.input_dropout(input_rep)
|
161 |
+
last_rep = self.layers(input_rep)
|
162 |
+
logits = self.logit(last_rep)
|
163 |
+
probs = self.softmax(logits)
|
164 |
+
return last_rep, logits, probs
|
165 |
+
|
166 |
+
#dConfig = AutoConfig.from_pretrained("bert-base-uncased")
|
167 |
+
#hidden_size = int(dConfig.hidden_size)
|
168 |
+
#num_hidden_layers_d = 2;
|
169 |
+
#hidden_levels_d = [hidden_size for i in range(0, num_hidden_layers_d)]
|
170 |
+
#label_list = ["1", "0"]
|
171 |
+
#label_list.append('UNL')
|
172 |
+
#discriminator = Discriminator(input_size=hidden_size*2, hidden_sizes=hidden_levels_d, num_labels=len(label_list), dropout_rate=out_dropout_rate).to(device)
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
# Function to read reviews from a text file
|
177 |
def load_reviews_from_file(file_path):
|
178 |
reviews = {}
|