Spaces:
Sleeping
Sleeping
Jasonntone
commited on
Commit
•
65fa05a
1
Parent(s):
d6df378
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st # type: ignore
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import seaborn as sn
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from plotly import graph_objs as go
|
7 |
+
from sklearn.linear_model import LinearRegression
|
8 |
+
|
9 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
10 |
+
|
11 |
+
data = pd.read_csv('Salary_Data.csv')
|
12 |
+
st.write(data.head())
|
13 |
+
X = np.array(data[['YearsExperience']])
|
14 |
+
lr = LinearRegression()
|
15 |
+
lr.fit(X, np.array(data.Salary))
|
16 |
+
|
17 |
+
nav = st.sidebar.radio('Navigation',['Home','Prediction', 'About'])
|
18 |
+
if nav == 'Home':
|
19 |
+
col1,col2,col3 = st.columns([1,2,1])
|
20 |
+
with col2:
|
21 |
+
st.title('Salary Prediction')
|
22 |
+
st.image('salary.jpg',width=600)
|
23 |
+
if st.checkbox('Show Table'):
|
24 |
+
st.write(data)
|
25 |
+
graph = st.selectbox('What kind of graph you want to plot?',['Non interactive','Interactive'])
|
26 |
+
val = st.slider('Filter data using Years', 0,20)
|
27 |
+
data = data.loc[data.YearsExperience>= val]
|
28 |
+
if graph == 'Non interactive':
|
29 |
+
plt.figure(figsize=(10,5))
|
30 |
+
plt.scatter(data.YearsExperience,data.Salary)
|
31 |
+
plt.xlabel('Years of experience')
|
32 |
+
plt.ylabel('Salaries')
|
33 |
+
st.pyplot()
|
34 |
+
else:
|
35 |
+
layout = go.Layout(xaxis = dict(range=[0,16]),
|
36 |
+
yaxis = dict(range=[0,210000]))
|
37 |
+
fig = go.Figure(data=go.Scatter(x=data.YearsExperience,y=data.Salary,
|
38 |
+
mode='markers'),layout=layout)
|
39 |
+
st.plotly_chart(fig)
|
40 |
+
elif nav == 'Prediction':
|
41 |
+
st.header('Know your salary')
|
42 |
+
values = st.number_input('Enter your exp',0,20,step=1)
|
43 |
+
values = np.array(values).reshape(-1,1)
|
44 |
+
pred = lr.predict(values)[0]
|
45 |
+
if st.button('Predict'):
|
46 |
+
st.success(f"Your Predicted Salary is {round(pred)}")
|