import streamlit as st # type: ignore from streamlit_option_menu import option_menu # type: ignore import streamlit_shadcn_ui as ui # type: ignore from streamlit_echarts import st_echarts import numpy as np import pandas as pd import seaborn as sns # type: ignore import matplotlib.pyplot as plt import folium #type:ignore from streamlit_folium import st_folium #type:ignore import plotly.express as px import base64 import pickle import time from datetime import datetime from pycaret.regression import load_model, predict_model st.set_page_config( page_title="WALPA - Walmart Prediction App", page_icon="🧊", layout="wide", initial_sidebar_state="expanded", ) @st.cache_data def load_data(dataset): df = pd.read_csv(dataset) return df def csvdownload(df): csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions href = f'Download CSV File' return href def autoplay_audio(file_path: str): with open(file_path, "rb") as f: data = f.read() b64 = base64.b64encode(data).decode() md = f""" """ st.markdown( md, unsafe_allow_html=True, ) data = load_data('./datasets/Walmart.csv') sumSales = data['Daily_Sales'].sum() sumUnem = data['Unemployment'].sum() def sum_Sales(): if sumSales > 999 and sumSales < 9999: sum_display = "$" + str(sumSales)[:1] + "K" elif sumSales > 9999 and sumSales < 99999: sum_display = "$" + str(sumSales)[:2] + "K" elif sumSales > 99999 and sumSales < 999999: sum_display = "$" + str(sumSales)[:3] + "K" elif sumSales > 999999 and sumSales < 9999999: sum_display = "$" + str(sumSales)[:1] + "M" elif sumSales > 9999999 and sumSales < 99999999: sum_display = "$" + str(sumSales)[:2] + "M" elif sumSales > 99999999 and sumSales < 999999999: sum_display = "$" + str(sumSales)[:3] + "M" elif sumSales > 999999999 and sumSales < 9999999999: sum_display = "$" + str(sumSales)[:1] + "MD" elif sumSales > 9999999999 and sumSales < 99999999999: sum_display = "$" + str(sumSales)[:2] + "MD" elif sumSales > 99999999999 and sumSales < 99999999999: sum_display = "$" + str(sumSales)[:3] + "MD" elif sumSales > 999999999999 and sumSales < 999999999999: sum_display = "$" + str(sumSales)[:4] + "MD" return sum_display def sumUnemp(): if sumUnem > 999 and sumUnem < 9999: sum_Unem = str(sumUnem)[:1] + "K" elif sumUnem > 9999 and sumUnem < 99999: sum_Unem = str(sumUnem)[:2] + "K" elif sumUnem > 99999 and sumUnem < 999999: sum_Unem = str(sumUnem)[:3] + "K" elif sumUnem > 999999 and sumUnem < 9999999: sum_Unem = str(sumUnem)[:1] + "M" elif sumUnem > 9999999 and sumUnem < 99999999: sum_Unem = str(sumUnem)[:2] + "M" elif sumUnem > 99999999 and sumUnem < 999999999: sum_Unem = str(sumUnem)[:3] + "M" elif sumUnem > 999999999 and sumUnem < 9999999999: sum_Unem = str(sumUnem)[:1] + "MD" elif sumUnem > 9999999999 and sumUnem < 99999999999: sum_Unem = str(sumUnem)[:2] + "MD" elif sumUnem > 99999999999 and sumUnem < 99999999999: sum_Unem = str(sumUnem)[:3] + "MD" elif sumUnem > 999999999999 and sumUnem < 999999999999: sum_Unem = str(sumUnem)[:4] + "MD" return sum_Unem def main(): with st.sidebar: selected = option_menu("Main Menu", ['Home', 'Dashboard', 'Analysis', 'Visualization', 'Machine Learning'], icons=['house','speedometer2', 'boxes', 'graph-up-arrow', 'easel2'], menu_icon="list", default_index=0, styles={ "container": {"padding": "5px", "background-color": "transparent", "font-weight": "bold"}, "icon": {"font-size": "17px"}, "nav-link": {"font-size": "15px", "text-align": "left", "margin":"5px","padding": "10px", "--hover-color": "#1E90FF"}, "nav-link-selected": {"background-color": "#1E90FF"}, } ) # Subdivide the page into three columns left,middle,right = st.columns((0.5,4,0.5)) if selected == 'Home': with middle: col1, col2, col3 = st.columns(3) with col2: st.image('./assets/images/walpa-logo.png') st.subheader('What is Walpa ?') st.write("Walpa is a Streamlit Machine Learning App created to assist data engineers in multiple tasks such as datasets Analysis report, visualization, and predictions for the case of Walmart Inc.") st.write("This is not an official Walmart Inc app is just for educational purpose") st.subheader("Walpa's Team") team = [ {"role": "Founder", "name": "Jason Ntone"}, {"role": "Developer", "name": "Jason Ntone"}, {"role": "Designer", "name": "Jason Ntone"} ] st.write(team) st.markdown(" - All rights reserved WALPA\u00A9") elif selected == 'Dashboard': # First row with middle: col1, col2, col3 = st.columns(3) with col2: st.image('./assets/images/walpa-logo.png') st.title("Walmart Dashboard") col4, col5, col6 = st.columns(3) with col4: temp = st.metric(label="Total Sales", value=sum_Sales(), delta="From 5010 To 2012") with col5: temp = st.metric(label="Total Unemployemt", value=sumUnemp(), delta="From 2010 To 2012") with col6: temp = st.metric(label="Total Stores studied", value=45, delta="From 2010 To 2012") with middle: st.subheader("Walmart Stores Map") stores = data['Store'].unique() longitude_values = [-111.0327, -88.1668, -121.3477, -77.0891, -87.3695, -95.3271, -79.2854, -84.3594, -81.5951, -82.7852, -118.5694, -82.2711, -80.6665, -78.2971, -103.3284, -84.8482, -93.0727, -117.0266, -97.0088, -82.1349, -76.8572, -104.7973, -123.2838, -91.5127, -117.3879, -97.9895, -80.2403, -82.0174, -94.6041, -117.0774, -88.2285, -81.4383, -83.3702, -93.2422, -100.4930, -81.8765, -85.4835, -117.0731, -79.7245, -86.2356, -75.7216, -90.1516, -77.8990, -86.2169, -96.6857] latitude_values = [32.1555, 39.4931, 37.9886, 38.7684, 36.5298, 29.5636, 33.3776, 33.7603, 31.8469, 39.9673, 34.2801, 27.9944, 37.1505, 36.0659, 34.1866, 37.8041, 44.8955, 32.9759, 30.6631, 33.5412, 39.6366, 41.1364, 44.5714, 31.5634, 34.1041, 26.1536, 39.0212, 38.9188, 38.8837, 32.6389, 42.9937, 30.2862, 33.3263, 45.1571, 28.7043, 27.2008, 39.3378, 32.6072, 39.9002, 32.3838, 40.8332, 32.4081, 34.1641, 32.3418, 40.7399] # Create a map wmap = folium.Map(location=[37.0902, -95.7129], zoom_start=4) # Add markers for each store for store, lon, lat in zip(stores, longitude_values, latitude_values): folium.Marker([lat, lon], popup=store,icon=folium.Icon(color='blue', icon='shopping-cart', prefix='fa')).add_to(wmap) # Fit the map to the bounds of the USA wmap.fit_bounds([[24.396308, -125.000000], [49.384358, -66.934570]]) # call to render Folium map in Streamlit st_data = st_folium(wmap, width=800) elif selected == 'Analysis': with middle: col1,col2,col3 = st.columns((0.5,3,0.5)) with col2: tab = ui.tabs(options=['Overview', 'Sumary', 'Correlation Matrix'], default_value='Overview', key="none") st.title("Data Analysis") if tab == 'Overview': st.subheader('Walmart Daily Sales Overview') st.dataframe(data.head()) elif tab == 'Sumary': st.subheader('Walmart Daily Sales Sumary') st.dataframe(data.describe()) elif tab == 'Correlation Matrix': st.subheader('Walmart Correlation Matrix') fig = plt.figure(figsize=(15,5)) st.write(sns.heatmap(data.corr(),annot=True)) st.pyplot(fig) elif selected == 'Visualization': with middle: tab = ui.tabs(options=['Regplot', 'Barplot', 'Lineplot'], default_value='Barplot', key="none") if tab == 'Regplot': st.subheader('Walmart Daily Sales Regplot') fig = plt.figure(figsize=(15,5)) st.write(sns.regplot(data=data, x='Store', y='Daily_Sales')) st.pyplot(fig) elif tab == 'Barplot': st.subheader('Walmart Daily Sales Barplot') option = { "xAxis": { "type": "category", "data": data['Store'].tolist(), }, "yAxis": { "type": "value" }, "series": [{ "data": data['Daily_Sales'].tolist(), # Replace 'Sales' with the actual column name for sales data "type": "bar" }] } st_echarts( options=option, height="400px", ) elif tab == 'Lineplot': st.subheader('Walmart Daily Sales line plot') option = { "xAxis": { "type": "category", "data": data['Date'].tolist(), }, "yAxis": { "type": "value" }, "series": [{ "data": data['Daily_Sales'].tolist(), # Replace 'Sales' with the actual column name for sales data "type": "line" }] } st_echarts( options=option, height="400px", ) elif selected == 'Machine Learning': with middle: st.subheader('📈🎯 Daily Sales Prediction Widget') tab = ui.tabs(options=['Method 1: Upload Dataset', 'Method 2: Fill the form'], default_value='Fill the form', key="none") st.write('\n') if tab == 'Method 2: Fill the form': st.markdown('**Fill the form with correct data to make prediction**') col1,col2,col3 = st.columns(3) with col1: st.write('Enter the Year') year = ui.input(type='number', default_value=0, key="year") with col2: st.write('Enter the Month') month = ui.input(type='number', default_value=0, key="month") with col3: st.write('Enter the Day') day = ui.input(type='number', default_value=0, key="day") st.write('Enter Store Number') store = ui.input(type='number', default_value=0, key="input1") st.write(f'The date : **{year}-{month}-{day}** you have entered is that a holiday ?') holiday = [ {"label": "Yes", "value": 1, "id": "r1"}, {"label": "No", "value": 0, "id": "r2"}, ] holiday_flag = ui.radio_group(options=holiday, default_value=0, key="radio1") col3,col4 = st.columns((2,2)) with col3: st.write('Enter the Temperature') temperature = ui.input(type='text', default_value=0, key="input2") with col4: st.write('Enter the Fuel Price') fuel_price = ui.input(type='text', default_value=0, key="input3") col5,col6 = st.columns((2,2)) with col5: st.write('Enter the CPI') cpi = ui.input(type='text', default_value=0, key="input4") with col6: st.write('Enter the Unemployment') unemployment = ui.input(type='text', default_value=0, key="input5") Store= int(store) Holiday_Flag= int(holiday_flag) Temperature= float(temperature) Fuel_Price= float(fuel_price) CPI= float(cpi) Unemployment= float(unemployment) Year = int(year) Month = int(month) Day = int(day) form_data = pd.DataFrame([[Store, Holiday_Flag, Temperature, Fuel_Price, CPI, Unemployment, Year, Month, Day]], columns=['Store', 'Holiday_Flag', 'Temperature', 'Fuel_Price', 'CPI', 'Unemployment','Year', 'Month', 'Day']) st.subheader('Your provided data') st.dataframe(form_data) submit_btn = ui.button(text="Predict Daily Sales", key="styled_btn_tailwind", className="bg-blue-500 text-white") if submit_btn: if form_data.empty == False: model_path = './models/Walmart' model = load_model(model_path) # Make predictions using the loaded model and form_data pred = predict_model(model, data=form_data) prediction = pred['prediction_label'].values[0] # Display the prediction with st.status("Daily Sales Prediction processing...", expanded=True) as status: st.write("Handling data...") time.sleep(2) st.write("Load Model...") time.sleep(1) st.write("Load Data...") time.sleep(1) status.update(label="Daily Sales Prediction processing complete!", state="complete", expanded=False) autoplay_audio("./assets/audio/mixkit-positive-notification-951.wav") st.success(prediction) else: st.warning("Fill the form") if tab == 'Method 1: Upload Dataset': with middle: st.header("Load your file") uploaded_file = st.file_uploader('Upload your Dataset(.csv file)', type=['csv']) if uploaded_file: df = load_data(uploaded_file) df['Year'] = pd.to_datetime(df['Date']).dt.year df['Month'] = pd.to_datetime(df['Date']).dt.month df['Day'] = pd.to_datetime(df['Date']).dt.day df = df.drop(['Date'], axis=1) model_path = './models/Walmart' model = load_model(model_path) preds = predict_model(model, data=df) # Assuming 'predictions' is a list or array-like object predictions = preds['prediction_label'].values # Create DataFrame pp = pd.DataFrame(predictions, columns=['Daily_Sales_Prediction']) ndf = pd.concat([df, pp], axis=1) st.subheader("Daily_Sales Predictions") with st.status("Daily Sales Prediction processing...", expanded=True) as status: st.write("Handling data...") time.sleep(2) st.write("Load Model...") time.sleep(1) st.write("Load Data...") time.sleep(1) status.update(label="Daily Sales Prediction processing complete!", state="complete", expanded=False) autoplay_audio("./assets/audio/mixkit-positive-notification-951.wav") st.write(ndf) if __name__ == '__main__': main()