Javiai commited on
Commit
709edf5
·
1 Parent(s): 1034076

Update tests

Browse files
public/index.html CHANGED
@@ -1,33 +1,38 @@
1
- <html>
2
- <head>
 
 
3
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/mvoloskov/potion/potion.min.css">
4
- <script src="https://cdn.jsdelivr.net/npm/p5@1.8.0/lib/p5.js"></script>
5
  <style>
6
  body {
7
  background: #0b0f19;
8
  color: white;
9
  }
10
  </style>
11
-
12
- </head>
13
- <body>
 
 
14
  <header>
15
- <h1>Docker Opencv APP</h1>
16
- <p>A App developed for apply IA in streaming video in JavaScript</p>
17
- <p>This is a work in progress project that want to work with P5.js, OpenCV, Tensorflow.js, Node.js and Docker</p>
18
- <p>Right now, only apply a halftone over the webcam video</p>
19
  </header>
20
 
21
- <script src="sketch.js"></script>
22
- <!--
23
- <p>Blur Size: <input type="range" id="blurSize" value="30"></p>
24
- <p>Low Threshold: <input type="range" id="lowThreshold" value="15"></p>
25
- <p>High Threshold: <input type="range" id="highThreshold" value="25"></p>
26
- -->
27
  <div>
28
- <main>
29
- </main>
30
- </div>
31
- </body>
 
 
 
 
 
 
 
32
 
33
  </html>
 
1
+ <!DOCTYPE html>
2
+
3
+ <head>
4
+ <title>Docker Tensorflow</title>
5
  <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/mvoloskov/potion/potion.min.css">
6
+
7
  <style>
8
  body {
9
  background: #0b0f19;
10
  color: white;
11
  }
12
  </style>
13
+ <!-- Load p5.js -->
14
+ <script src="https://cdn.jsdelivr.net/npm/p5@1.4.0/lib/p5.js"></script>
15
+ </head>
16
+
17
+ <body>
18
  <header>
19
+ <h1>Docker Opencv APP</h1>
20
+ <p>A App developed for apply IA in streaming video in JavaScript</p>
21
+ <p>This is a work in progress project that want to work with P5.js, OpenCV, Tensorflow.js, Node.js and Docker</p>
22
+ <p>Right now, only apply a halftone over the webcam video </p> <a href="tests/index_old.html">Halftone</a>
23
  </header>
24
 
 
 
 
 
 
 
25
  <div>
26
+
27
+ <canvas id="canvas" width="640" height="480"></canvas>
28
+ <main></main>
29
+ </div>
30
+
31
+ <script src="https://unpkg.com/@tensorflow/tfjs-core@3.3.0/dist/tf-core.js"></script>
32
+ <script src="https://unpkg.com/@tensorflow/tfjs-converter@3.3.0/dist/tf-converter.js"></script>
33
+ <script src="https://unpkg.com/@tensorflow/tfjs-backend-webgl@3.3.0/dist/tf-backend-webgl.js"></script>
34
+ <script src="https://unpkg.com/@tensorflow-models/deeplab@0.2.1/dist/deeplab.js"></script>
35
+ <script src="sketch4.js" defer></script>
36
+ </body>
37
 
38
  </html>
public/sketch4.js ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ let capture;
3
+ let font;
4
+
5
+ let segmenter;
6
+ let people;
7
+ let model;
8
+ const canvas = document.getElementById('canvas');
9
+ let ctx = canvas.getContext('2d');
10
+
11
+ function setup() {
12
+
13
+ createCanvas(640, 480);
14
+
15
+ capture = createCapture(VIDEO, initModel);
16
+
17
+ capture.hide();
18
+ background(255);
19
+
20
+ }
21
+
22
+ async function initModel() {
23
+ model = await deeplab.load({ "base": 'pascal', "quantizationBytes": 2 });
24
+
25
+ }
26
+
27
+ async function predict() {
28
+ console.log('ok')
29
+ segmenter = await model.segment(capture.elt);
30
+ renderPrediction(segmenter);
31
+
32
+ }
33
+
34
+ function renderPrediction(prediction) {
35
+ const { legend, height, width, segmentationMap } = prediction;
36
+ //console.log(`prediction: ${JSON.stringify(prediction)}`);
37
+
38
+ let segmentationMapData = new ImageData(segmentationMap, width, height);
39
+ //console.log(segmentationMapData)
40
+ ctx.putImageData(segmentationMapData, 0, 0);
41
+
42
+ }
43
+
44
+ function draw() {
45
+ background(0,1);
46
+
47
+ if (model) {
48
+ predict();
49
+ console.log('ok')
50
+ }
51
+
52
+ }
53
+
54
+
55
+
56
+
57
+ function keyPressed() {
58
+ noLoop();
59
+ }
public/tests/index.js ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ let model;
2
+ const chooseFiles = document.getElementById('chooseFiles');
3
+ const modelNameSelect = document.getElementById("modelNameSelect");
4
+ const segmentImageButton = document.getElementById("segmentImage");
5
+ const legendsDiv = document.getElementById("legends");
6
+ const image = document.getElementById('image');
7
+ const canvas = document.getElementById('canvas');
8
+ const ctx = canvas.getContext('2d');
9
+
10
+ chooseFiles.onchange = () => {
11
+ const [file] = chooseFiles.files
12
+ if (file) {
13
+ image.src = URL.createObjectURL(file);
14
+ }
15
+ };
16
+
17
+ segmentImageButton.onclick = predict;
18
+
19
+ document.getElementById("loadModel").onclick = async () => {
20
+ segmentImageButton.disabled = true;
21
+ updateModelLoadStatus("Model Loading...");
22
+
23
+ const modelName = modelNameSelect.options[modelNameSelect.selectedIndex].value;
24
+ await loadModel(modelName);
25
+ updateModelLoadStatus(modelName + " model loaded!");
26
+
27
+ segmentImageButton.disabled = false;
28
+ };
29
+
30
+ async function loadModel(modelName) {
31
+ model = await deeplab.load({ "base": modelName, "quantizationBytes": 2 });
32
+ }
33
+
34
+ function updateModelLoadStatus(status) {
35
+ document.getElementById("modelLoadedStatus").innerHTML = status;
36
+ }
37
+
38
+ async function predict() {
39
+ let prediction = await model.segment(image);
40
+ renderPrediction(prediction);
41
+ }
42
+
43
+ function renderPrediction(prediction) {
44
+ const { legend, height, width, segmentationMap } = prediction;
45
+ //console.log(`prediction: ${JSON.stringify(prediction)}`);
46
+
47
+ const segmentationMapData = new ImageData(segmentationMap, width, height);
48
+ console.log(segmentationMapData)
49
+ canvas.width = width;
50
+ canvas.height = height;
51
+ ctx.putImageData(segmentationMapData, 0, 0);
52
+
53
+ displayLegends(legend);
54
+ }
55
+
56
+
57
+ function displayLegends(legendObj) {
58
+ legendsDiv.innerHTML = "";
59
+ document.getElementById("legendLabel").style.visibility = "visible";
60
+
61
+ Object.keys(legendObj).forEach((legend) => {
62
+ const [red, green, blue] = legendObj[legend];
63
+
64
+ const span = document.createElement('span');
65
+ span.innerHTML = legend;
66
+ span.style.backgroundColor = `rgb(${red}, ${green}, ${blue})`;
67
+ span.style.padding = '10px';
68
+ span.style.marginRight = '10px';
69
+ span.style.color = '#ffffff';
70
+
71
+ legendsDiv.appendChild(span);
72
+ });
73
+ }
public/tests/index_old.html ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <html>
2
+ <head>
3
+ <link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/mvoloskov/potion/potion.min.css">
4
+
5
+ <style>
6
+ body {
7
+ background: #0b0f19;
8
+ color: white;
9
+ }
10
+ </style>
11
+ <script src="https://cdn.jsdelivr.net/npm/p5@1.8.0/lib/p5.js"></script>
12
+ </head>
13
+ <body>
14
+ <header>
15
+ <h1>Docker Opencv APP</h1>
16
+ <p>A App developed for apply IA in streaming video in JavaScript</p>
17
+ <p>This is a work in progress project that want to work with P5.js, OpenCV, Tensorflow.js, Node.js and Docker</p>
18
+ <p>Right now, only apply a halftone over the webcam video</p>
19
+ </header>
20
+
21
+ <script src="sketch.js"></script>
22
+ <!--
23
+ <p>Blur Size: <input type="range" id="blurSize" value="30"></p>
24
+ <p>Low Threshold: <input type="range" id="lowThreshold" value="15"></p>
25
+ <p>High Threshold: <input type="range" id="highThreshold" value="25"></p>
26
+ -->
27
+ <div>
28
+ <main>
29
+ </main>
30
+ </div>
31
+ </body>
32
+
33
+ </html>
public/tests/index_posenet.html ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html>
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0, initial-scale=1">
6
+
7
+ <title>3D Pose Estimation Sample by BlazePose & p5.js</title>
8
+ <!-- Load p5.js -->
9
+ <script src="https://cdn.jsdelivr.net/npm/p5@1.4.0/lib/p5.js"></script>
10
+ <!-- Load MediaPipe Pose Using TensorFlow.js runtime -->
11
+ <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-core"></script>
12
+ <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-converter"></script>
13
+ <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-webgl"></script>
14
+ <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/pose-detection"></script>
15
+ <script src="https://cdn.jsdelivr.net/npm/@mediapipe/pose"></script>
16
+ <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/pose-detection"></script>
17
+ <!-- Load MediaPipe Pose Using MediaPipe runtime -->
18
+ <!-- <script src="https://cdn.jsdelivr.net/npm/@mediapipe/pose"></script>
19
+ <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/pose-detection"></script> -->
20
+ <!-- My Sketch -->
21
+ </head>
22
+ <body>
23
+
24
+ <script src="sketch2.js"></script>
25
+ </body>
26
+ </html>
public/tests/index_segmegtation.html ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html>
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0, initial-scale=1">
6
+
7
+ <title>3D Pose Estimation Sample by BlazePose & p5.js</title>
8
+ <!-- Load p5.js -->
9
+ <script src="https://cdn.jsdelivr.net/npm/p5@1.4.0/lib/p5.js"></script>
10
+ <!-- Load MediaPipe Pose Using TensorFlow.js runtime -->
11
+ <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-core"></script>
12
+ <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-converter"></script>
13
+ <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-webgl"></script>
14
+ <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/body-segmentation"></script>
15
+
16
+ <!-- Optional: Include below scripts if you want to use TensorFlow.js runtime.
17
+ <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-converter"></script>-->
18
+
19
+ <!-- Optional: Include below scripts if you want to use MediaPipe runtime.
20
+ <script src="https://cdn.jsdelivr.net/npm/@mediapipe/selfie_segmentation"></script>-->
21
+ </head>
22
+ <body>
23
+ <canvas id="myCanvas" width="640" height="480" style="border:1px solid #000000;"></canvas>
24
+ <script src="sketch3.js"></script>
25
+ </body>
26
+ </html>
public/{sketch.js → tests/sketch.js} RENAMED
File without changes
public/tests/sketch2.js ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // // Import TFJS runtime with side effects.
2
+ // import '@tensorflow/tfjs-backend-webgl';
3
+ // import * as poseDetection from '@tensorflow-models/pose-detection';
4
+ // // import 'https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-webgl';
5
+ // // import * as poseDetection from 'https://cdn.jsdelivr.net/npm/@tensorflow-models/pose-detection';
6
+
7
+ /*
8
+ =============
9
+ Params
10
+ =============
11
+ */
12
+
13
+ let capture;
14
+ let font;
15
+
16
+ let detector;
17
+ let poses;
18
+
19
+ let angle = 0.0;
20
+
21
+ /*
22
+ =============
23
+ Function
24
+ =============
25
+ */
26
+
27
+ function preload() {
28
+
29
+ }
30
+
31
+ function setup() {
32
+
33
+ createCanvas(640, 480);
34
+
35
+ capture = createCapture(VIDEO, captureLoaded);
36
+
37
+ background(255);
38
+
39
+ }
40
+
41
+ function captureLoaded() {
42
+ console.log("capture loaded...");
43
+ initModel();
44
+ }
45
+
46
+ async function initModel() {
47
+ const _model = poseDetection.SupportedModels.MoveNet;
48
+ console.log("model:", _model);
49
+ const detectorConfig = {
50
+ runtime: "tfjs", // 'mediapipe', 'tfjs'
51
+ //modelType: "lite", // 'lite', 'full', 'heavy'
52
+ };
53
+ detector = await poseDetection.createDetector(_model, detectorConfig);
54
+ }
55
+
56
+ async function getPose() {
57
+ poses = await detector.estimatePoses(capture.elt);
58
+ }
59
+
60
+ function draw() {
61
+ background(0,1);
62
+ if (detector) {
63
+ getPose();
64
+ }
65
+ drawPoseInfo();
66
+ }
67
+
68
+
69
+ function drawPoseInfo() {
70
+ noStroke();
71
+ fill(255, 0, 0, 128);
72
+
73
+
74
+ if (poses && poses.length > 0) {
75
+
76
+ for (var i = 0; i < poses.length; i++) {
77
+ for (var j = 0; j<poses[i].keypoints.length; j++) {
78
+ if (poses[i].keypoints[j].score > 0.1) {
79
+ let posX = width-int(poses[i].keypoints[j].x);
80
+ let posY = height-int(poses[i].keypoints[j].y);
81
+
82
+ //circle(posX, posY, 10);
83
+
84
+ }
85
+ }
86
+ }
87
+
88
+
89
+ stroke(255);
90
+ if (poses.length > 0) {
91
+
92
+ let l = poses[0].keypoints.length;
93
+
94
+ for (var j = 4; j<l; j++) {
95
+ for (var i = j+1; i<l; i++) {
96
+ let d = dist(int(poses[0].keypoints[i].x),
97
+ int(poses[0].keypoints[i].y),
98
+ int(poses[0].keypoints[j].x),
99
+ int(poses[0].keypoints[j].y));
100
+
101
+ if(d > 150){
102
+ line( int(poses[0].keypoints[i].x),
103
+ int(poses[0].keypoints[i].y),
104
+ int(poses[0].keypoints[j].x),
105
+ int(poses[0].keypoints[j].y));
106
+ }
107
+
108
+
109
+ }
110
+ }
111
+ }
112
+ }
113
+ }
114
+
115
+
116
+ function keyPressed() {
117
+ noLoop();
118
+ }
public/tests/sketch3.js ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ let capture;
3
+ let font;
4
+
5
+ let segmenter;
6
+ let people;
7
+
8
+ function setup() {
9
+
10
+ createCanvas(640, 480);
11
+
12
+ capture = createCapture(VIDEO, captureLoaded);
13
+
14
+ background(255);
15
+
16
+ }
17
+
18
+ function captureLoaded() {
19
+ console.log("capture loaded...");
20
+ initModel();
21
+ }
22
+
23
+ async function initModel() {
24
+ const model = bodySegmentation.SupportedModels.MediaPipeSelfieSegmentation; // or 'BodyPix'
25
+
26
+ const segmenterConfig = {
27
+ runtime: 'tfjs', // or 'tfjs'
28
+ modelType: 'general' // or 'landscape'
29
+ };
30
+
31
+ segmenter = await bodySegmentation.createSegmenter(model, segmenterConfig);
32
+
33
+
34
+ }
35
+
36
+ async function getPose() {
37
+ people = await segmenter.segmentPeople(capture.elt);
38
+ }
39
+
40
+ function draw() {
41
+ background(0,1);
42
+ if (segmenter) {
43
+ getPose();
44
+ getPose2();
45
+ }
46
+ drawPoseInfo();
47
+ }
48
+
49
+
50
+ function drawPoseInfo() {
51
+ noStroke();
52
+ fill(255, 0, 0, 128);
53
+
54
+ if (people && people.length > 0) {
55
+ //let img = people[0].mask.toImageData().ImageData;
56
+ //console.log(img)
57
+ /*
58
+ for (var i = 0; i < people.length; i++) {
59
+ for (var j = 0; j<people[i].keypoints.length; j++) {
60
+ if (people[i].keypoints[j].score > 0.1) {
61
+ let posX = width-int(people[i].keypoints[j].x);
62
+ let posY = height-int(people[i].keypoints[j].y);
63
+
64
+ circle(posX, posY, 10);
65
+
66
+ }
67
+ }
68
+ }*/
69
+
70
+
71
+ }
72
+ }
73
+
74
+
75
+ function keyPressed() {
76
+ noLoop();
77
+ }
78
+
79
+ async function getPose2(){
80
+
81
+ const img = capture.elt;
82
+
83
+
84
+ const segmentation = await segmenter.segmentPeople(img);
85
+
86
+ // The mask image is an binary mask image with a 1 where there is a person and
87
+ // a 0 where there is not.
88
+ const coloredPartImage = await bodySegmentation.toBinaryMask(segmentation);
89
+ const opacity = 0.7;
90
+ const flipHorizontal = false;
91
+ const maskBlurAmount = 0;
92
+ const canvas = document.getElementById('canvas');
93
+ // Draw the mask image on top of the original image onto a canvas.
94
+ // The colored part image will be drawn semi-transparent, with an opacity of
95
+ // 0.7, allowing for the original image to be visible under.
96
+ bodySegmentation.drawMask(
97
+ canvas, img, coloredPartImage, opacity, maskBlurAmount,
98
+ flipHorizontal);
99
+ }