Spaces:
Runtime error
Runtime error
feat: demo for 34b llava on zero gpu
Browse files- app.py +55 -59
- requirements.txt +5 -1
app.py
CHANGED
@@ -1,63 +1,59 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
for
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer
|
3 |
+
from threading import Thread
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
import spaces
|
9 |
"""
|
10 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
11 |
"""
|
12 |
+
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-34b-hf")
|
13 |
+
|
14 |
+
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-34b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
15 |
+
model.to("cuda:0")
|
16 |
+
|
17 |
+
@spaces.GPU
|
18 |
+
def bot_streaming(message, history):
|
19 |
+
print(message)
|
20 |
+
if message["files"]:
|
21 |
+
image = message["files"][-1]["path"]
|
22 |
+
else:
|
23 |
+
# if there's no image uploaded for this turn, look for images in the past turns
|
24 |
+
# kept inside tuples, take the last one
|
25 |
+
for hist in history:
|
26 |
+
if type(hist[0])==tuple:
|
27 |
+
image = hist[0][0]
|
28 |
+
|
29 |
+
if image is None:
|
30 |
+
gr.Error("You need to upload an image for LLaVA to work.")
|
31 |
+
prompt=f"[INST] <image>\n{message['text']} [/INST]"
|
32 |
+
image = Image.open(image).convert("RGB")
|
33 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
34 |
+
|
35 |
+
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
|
36 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=300)
|
37 |
+
generated_text = ""
|
38 |
+
|
39 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
40 |
+
thread.start()
|
41 |
+
|
42 |
+
text_prompt =f"[INST] \n{message['text']} [/INST]"
|
43 |
+
|
44 |
+
|
45 |
+
buffer = ""
|
46 |
+
for new_text in streamer:
|
47 |
+
|
48 |
+
buffer += new_text
|
49 |
+
|
50 |
+
generated_text_without_prompt = buffer[len(text_prompt):]
|
51 |
+
time.sleep(0.04)
|
52 |
+
yield generated_text_without_prompt
|
53 |
+
|
54 |
+
|
55 |
+
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA NeXT", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]},
|
56 |
+
{"text": "How to make this pastry?", "files":["./baklava.png"]}],
|
57 |
+
description="Try [LLaVA 1.6 34b] in this demo. Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
|
58 |
+
stop_btn="Stop Generation", multimodal=True)
|
59 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1 +1,5 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
spaces
|
2 |
+
pillow
|
3 |
+
accelerate
|
4 |
+
torch
|
5 |
+
transformers
|