File size: 1,947 Bytes
ce1c4dd 6318241 ce1c4dd 8210be8 ce1c4dd 8210be8 ce1c4dd 8210be8 ce1c4dd 8210be8 ce1c4dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
# this model was loaded from https://hf.co/models
model = AutoModelForSeq2SeqLM.from_pretrained("Jayyydyyy/m2m100_418m_tokipona")
tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
LANG_CODES = {
"English":"en",
"toki pona":"tl"
}
def translate(text, src_lang, tgt_lang, candidates:int):
"""
Translate the text from source lang to target lang
"""
src = LANG_CODES.get(src_lang)
tgt = LANG_CODES.get(tgt_lang)
tokenizer.src_lang = src
tokenizer.tgt_lang = tgt
ins = tokenizer(text, return_tensors='pt').to(device)
gen_args = {
'return_dict_in_generate': True,
'output_scores': True,
'output_hidden_states': True,
'length_penalty': 0.0, # don't encourage longer or shorter output,
'num_return_sequences': candidates,
'num_beams':candidates,
'forced_bos_token_id': tokenizer.lang_code_to_id[tgt]
}
outs = model.generate(**{**ins, **gen_args})
output = tokenizer.batch_decode(outs.sequences, skip_special_tokens=True)
return output
app = gr.Interface(
fn=translate,
inputs=[
gr.components.Textbox(label="Text"),
gr.components.Dropdown(label="Source Language", choices=LANG_CODES.keys()),
gr.components.Dropdown(label="Target Language", choices=LANG_CODES.keys()),
gr.Slider(label="Number of return sequences", value=1, minimum=1, maximum=12)
],
outputs=["text"],
examples=[["This is an example statement. It will be translated from English to toki pona.", "English", "toki pona"]],
cache_examples=False,
title="A simple English / toki pona Neural Translation App",
description="A simple English / toki pona Neural Translation App"
)
app.launch() |