File size: 11,492 Bytes
e7ab06c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
from dash import Dash, dcc, html, Input, Output, State
import dash.dependencies as dd
import plotly.express as px
import pandas as pd
# Load DataFrame from CSV
df_result_bad_distil_2 = df = pd.read_csv(
"hf://datasets/Jbddai/customer_reviews/bad_distil_2_with_cluster_labels_cleaned_company.csv"
)
df_result_good_distil_2 = df = pd.read_csv(
"hf://datasets/Jbddai/customer_reviews/good_distil_2_with_cluster_labels_cleaned_company.csv"
)
def preprocess_data_for_slider_marks(df):
min_label = df["labels"].min()
max_label = df["labels"].max()
min_cluster_rank = df["cluster_rank"].min()
max_cluster_rank = df["cluster_rank"].max()
label_marks = {i: str(i + 1) for i in range(min_label, max_label + 1, 10)}
cluster_rank_marks = {i: str(i + 1) for i in range(min_cluster_rank, max_cluster_rank + 1, 10)}
return label_marks, min_label, max_label, cluster_rank_marks, min_cluster_rank, max_cluster_rank
label_marks, min_label, max_label, cluster_rank_marks, min_cluster_rank, max_cluster_rank = (
preprocess_data_for_slider_marks(df_result_good_distil_2)
)
sentiment_options = [
{"label": "gut", "value": "gut"},
{"label": "schlecht", "value": "schlecht"},
]
app = Dash(__name__)
app.layout = html.Div(
[
html.Div(
[
html.H4("Interactive Plot of Customer Reviews"),
html.Div(
[
html.P("Select sentiment:"),
dcc.Dropdown(
id="sentiment-dropdown",
options=sentiment_options,
value="gut",
style={"width": "50%", "margin": "auto"},
clearable=False,
multi=False,
),
],
style={"width": "50%", "margin": "auto"},
),
html.Div(
[
html.P("Select range of labels:"),
dcc.RangeSlider(
id="label-range-slider",
min=df_result_good_distil_2["labels"].min(),
max=df_result_good_distil_2["labels"].max(),
step=1,
value=[
df_result_good_distil_2["labels"].min(),
df_result_good_distil_2["labels"].max(),
],
marks={
i: str(i + 1)
for i in range(
df_result_good_distil_2["labels"].min(),
df_result_good_distil_2["labels"].max() + 1,
10,
)
},
tooltip={"always_visible": True, "placement": "bottom"},
),
html.Button("Reset Range", id="reset-button", n_clicks=0),
],
style={"width": "50%", "margin": "auto"},
),
html.Div(
[
html.P("Select range of cluster by rank/popularity (by number of reviews descending):"),
dcc.RangeSlider(
id="cluster-rank-slider",
min=df_result_good_distil_2["cluster_rank"].min(),
max=df_result_good_distil_2["cluster_rank"].max(),
step=1,
value=[
df_result_good_distil_2["cluster_rank"].min(),
df_result_good_distil_2["cluster_rank"].max(),
],
marks={
i: str(i + 1)
for i in range(
df_result_good_distil_2["cluster_rank"].min(),
df_result_good_distil_2["cluster_rank"].max() + 1,
10,
)
},
tooltip={"always_visible": True, "placement": "bottom"},
),
html.Button("Reset Cluster Rank", id="reset-cluster-button", n_clicks=0),
],
style={"width": "50%", "margin": "auto"},
),
html.Div(
[
html.P("Show Cluster Labels:"),
dcc.Checklist(
id="show-cluster-labels",
options=[{"label": "Show", "value": "on"}],
value=["off"],
),
],
style={"width": "50%", "margin": "auto"},
),
],
style={"position": "relative", "zIndex": "1001", "marginBottom": "20px"},
),
dcc.Graph(
id="scatter-plot",
style={
"height": "80vh",
"width": "90vw",
"position": "relative",
"zIndex": "999",
},
),
html.Div(
[html.Button("Generate LLM Prompt from current selection", id="generate-cluster-button", n_clicks=0)],
style={"width": "50%", "margin": "auto"},
),
html.Div(
[
html.P("Prompt for LLM:"),
dcc.Textarea(
id="cluster-text-output",
style={"width": "100%", "height": "200px", "display": "none"},
value="",
),
],
style={"width": "50%", "margin": "auto"},
),
]
)
@app.callback(
Output("scatter-plot", "figure"),
[
Input("label-range-slider", "value"),
Input("cluster-rank-slider", "value"),
Input("sentiment-dropdown", "value"),
Input("show-cluster-labels", "value"),
],
)
def update_scatter_plot(label_range, cluster_rank_range, selected_sentiment, show_cluster_labels):
show_labels = "on" in show_cluster_labels
if selected_sentiment == "gut":
df_filtered = df_result_good_distil_2
else:
df_filtered = df_result_bad_distil_2
df_filtered = df_filtered[
(df_filtered["labels"].between(label_range[0], label_range[1]))
& (df_filtered["cluster_rank"].between(cluster_rank_range[0], cluster_rank_range[1]))
]
outliers = df_filtered[df_filtered.labels == -1]
clustered = df_filtered[df_filtered.labels != -1]
fig = px.scatter(
clustered,
x="x",
y="y",
hover_data=[
"summary_good_bad",
"sentiment",
"cluster_rank",
"cluster_count",
"clean_review_br",
],
hover_name="cluster_label",
color="labels",
color_continuous_scale="rainbow",
opacity=0.7,
)
if show_labels:
centroids = clustered.groupby("labels", sort=False).agg(
{
"x": "mean",
"y": "mean",
"cluster_label": "first",
"cluster_count": "count",
}
)
for row in centroids.itertuples():
fig.add_annotation(
x=row.x,
y=row.y,
text=f"{row.cluster_label}, #reviews: {row.cluster_count}",
showarrow=False,
)
fig.add_scatter(
x=outliers["x"],
y=outliers["y"],
mode="markers",
marker=dict(color="lightgray", opacity=0.5, size=5.0),
name="No cluster",
selectedpoints=False,
hoverinfo="skip",
)
fig.update_layout(coloraxis_colorbar=dict(len=0.9, x=1.0), height=600)
fig.update_traces(marker=dict(size=3), selector=dict(mode="markers"))
return fig
@app.callback(
[
Output("label-range-slider", "marks"),
Output("label-range-slider", "min"),
Output("label-range-slider", "max"),
Output("cluster-rank-slider", "marks"),
Output("cluster-rank-slider", "min"),
Output("cluster-rank-slider", "max"),
],
[Input("sentiment-dropdown", "value")],
)
def update_slider_marks(selected_sentiment):
if selected_sentiment == "gut":
df_filtered = df_result_good_distil_2
else:
df_filtered = df_result_bad_distil_2
label_marks, min_label, max_label, cluster_rank_marks, min_cluster_rank, max_cluster_rank = (
preprocess_data_for_slider_marks(df_filtered)
)
return (
label_marks,
min_label,
max_label,
cluster_rank_marks,
min_cluster_rank,
max_cluster_rank,
)
@app.callback(
Output("label-range-slider", "value"),
[Input("reset-button", "n_clicks")],
[State("label-range-slider", "min"), State("label-range-slider", "max")],
)
def reset_label_slider(n_clicks, min_val, max_val):
return [min_val, max_val]
@app.callback(
Output("cluster-rank-slider", "value"),
[Input("reset-cluster-button", "n_clicks")],
[State("cluster-rank-slider", "min"), State("cluster-rank-slider", "max")],
)
def reset_cluster_slider(n_clicks, min_val, max_val):
return [min_val, max_val]
@app.callback(
Output("cluster-text-output", "style"),
[Input("generate-cluster-button", "n_clicks")],
)
def show_cluster_text_output(n_clicks):
if n_clicks > 0:
return {"width": "100%", "height": "200px", "display": "block"}
else:
return {"width": "100%", "height": "200px", "display": "none"}
@app.callback(
Output("cluster-text-output", "value"),
[Input("generate-cluster-button", "n_clicks")],
[State("cluster-rank-slider", "value"), State("sentiment-dropdown", "value")],
)
def update_cluster_text_output(n_clicks, cluster_rank_range, selected_sentiment):
if n_clicks > 0:
if selected_sentiment == "gut":
df_text_outp = df_result_good_distil_2
else:
df_text_outp = df_result_bad_distil_2
df_text_outp = df_text_outp[
(df_text_outp["cluster_rank"] <= cluster_rank_range[1])
& (df_text_outp["cluster_rank"] >= cluster_rank_range[0])
]
df_text_outp["summary_good_bad"] = df_text_outp["summary_good_bad"].fillna("").astype(str)
sampled_data = df_text_outp.sample(frac=0.1, random_state=42)
grouped_data = (
sampled_data.groupby("cluster_label", sort=False)["summary_good_bad"].agg("\n".join).reset_index()
)
prompt_instruction = """Analysiere die nach ### folgenden CLUSTER "Clustertitel", die einzelene Bestandteile von Bewertungen erhalten\nund leite pro Cluster eine Business Massnahme ab um das Hauptproblem des Clusters zu lösen oder zu Verbessern.\nGib das Cluster mit seinem "Clustertitel" sowie die dazugehörige Maßnahme zurück.\n###"""
cluster_texts = prompt_instruction + "\n\n".join(
f"\nCLUSTER - {row['cluster_label']}\n{row['summary_good_bad']}" for _, row in grouped_data.iterrows()
)
return cluster_texts
else:
return ""
if __name__ == "__main__":
app.run_server(debug=True, host="0.0.0.0", port=7860)
|