Jeff28 commited on
Commit
dc95783
1 Parent(s): c8d1432

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +341 -0
app.py CHANGED
@@ -34,4 +34,345 @@ list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instru
34
  ]
35
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  demo()
 
34
  ]
35
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
36
 
37
+ # Load PDF document and create doc splits
38
+ def load_doc(list_file_path, chunk_size, chunk_overlap):
39
+ # Processing for one document only
40
+ #loader = PyPDFLoader(file_path)
41
+ #pages = loader.load()
42
+ loaders = [PyPDFLoader(x) for x in list_file_path]
43
+ pages = []
44
+ for loader in loaders:
45
+ pages.extend(loader.load())
46
+ # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
47
+ text_splitter = RecursiveCharacterTextSplitter(
48
+ chunk_size = chunk_size,
49
+ chunk_overlap = chunk_overlap)
50
+ doc_splits = text_splitter.split_documents(pages)
51
+ return doc_splits
52
+
53
+
54
+ # Create vector database
55
+ def create_db(splits, collection_name):
56
+ embedding = HuggingFaceEmbeddings()
57
+ new_client = chromadb.EphemeralClient()
58
+ vectordb = Chroma.from_documents(
59
+ documents=splits,
60
+ embedding=embedding,
61
+ client=new_client,
62
+ collection_name=collection_name,
63
+ # persist_directory=default_persist_directory
64
+ )
65
+ return vectordb
66
+
67
+
68
+ # Load vector database
69
+ def load_db():
70
+ embedding = HuggingFaceEmbeddings()
71
+ vectordb = Chroma(
72
+ # persist_directory=default_persist_directory,
73
+ embedding_function=embedding)
74
+ return vectordb
75
+
76
+
77
+ # Initialize langchain LLM chain
78
+ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
79
+ progress(0.1, desc="Initializing HF tokenizer...")
80
+ # HuggingFacePipeline uses local model
81
+ # Note: it will download model locally...
82
+ # tokenizer=AutoTokenizer.from_pretrained(llm_model)
83
+ # progress(0.5, desc="Initializing HF pipeline...")
84
+ # pipeline=transformers.pipeline(
85
+ # "text-generation",
86
+ # model=llm_model,
87
+ # tokenizer=tokenizer,
88
+ # torch_dtype=torch.bfloat16,
89
+ # trust_remote_code=True,
90
+ # device_map="auto",
91
+ # # max_length=1024,
92
+ # max_new_tokens=max_tokens,
93
+ # do_sample=True,
94
+ # top_k=top_k,
95
+ # num_return_sequences=1,
96
+ # eos_token_id=tokenizer.eos_token_id
97
+ # )
98
+ # llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
99
+
100
+ # HuggingFaceHub uses HF inference endpoints
101
+ progress(0.5, desc="Initializing HF Hub...")
102
+ # Use of trust_remote_code as model_kwargs
103
+ # Warning: langchain issue
104
+ # URL: https://github.com/langchain-ai/langchain/issues/6080
105
+ if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
106
+ llm = HuggingFaceEndpoint(
107
+ repo_id=llm_model,
108
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
109
+ temperature = temperature,
110
+ max_new_tokens = max_tokens,
111
+ top_k = top_k,
112
+ load_in_8bit = True,
113
+ )
114
+ elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
115
+ raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
116
+ llm = HuggingFaceEndpoint(
117
+ repo_id=llm_model,
118
+ temperature = temperature,
119
+ max_new_tokens = max_tokens,
120
+ top_k = top_k,
121
+ )
122
+ elif llm_model == "microsoft/phi-2":
123
+ # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
124
+ llm = HuggingFaceEndpoint(
125
+ repo_id=llm_model,
126
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
127
+ temperature = temperature,
128
+ max_new_tokens = max_tokens,
129
+ top_k = top_k,
130
+ trust_remote_code = True,
131
+ torch_dtype = "auto",
132
+ )
133
+ elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
134
+ llm = HuggingFaceEndpoint(
135
+ repo_id=llm_model,
136
+ # model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
137
+ temperature = temperature,
138
+ max_new_tokens = 250,
139
+ top_k = top_k,
140
+ )
141
+ elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
142
+ raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
143
+ llm = HuggingFaceEndpoint(
144
+ repo_id=llm_model,
145
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
146
+ temperature = temperature,
147
+ max_new_tokens = max_tokens,
148
+ top_k = top_k,
149
+ )
150
+ else:
151
+ llm = HuggingFaceEndpoint(
152
+ repo_id=llm_model,
153
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
154
+ # model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
155
+ temperature = temperature,
156
+ max_new_tokens = max_tokens,
157
+ top_k = top_k,
158
+ )
159
+
160
+ progress(0.75, desc="Defining buffer memory...")
161
+ memory = ConversationBufferMemory(
162
+ memory_key="chat_history",
163
+ output_key='answer',
164
+ return_messages=True
165
+ )
166
+ # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
167
+ retriever=vector_db.as_retriever()
168
+ progress(0.8, desc="Defining retrieval chain...")
169
+ qa_chain = ConversationalRetrievalChain.from_llm(
170
+ llm,
171
+ retriever=retriever,
172
+ chain_type="stuff",
173
+ memory=memory,
174
+ # combine_docs_chain_kwargs={"prompt": your_prompt})
175
+ return_source_documents=True,
176
+ #return_generated_question=False,
177
+ verbose=False,
178
+ )
179
+ progress(0.9, desc="Done!")
180
+ return qa_chain
181
+
182
+
183
+ # Generate collection name for vector database
184
+ # - Use filepath as input, ensuring unicode text
185
+ def create_collection_name(filepath):
186
+ # Extract filename without extension
187
+ collection_name = Path(filepath).stem
188
+ # Fix potential issues from naming convention
189
+ ## Remove space
190
+ collection_name = collection_name.replace(" ","-")
191
+ ## ASCII transliterations of Unicode text
192
+ collection_name = unidecode(collection_name)
193
+ ## Remove special characters
194
+ #collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
195
+ collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
196
+ ## Limit length to 50 characters
197
+ collection_name = collection_name[:50]
198
+ ## Minimum length of 3 characters
199
+ if len(collection_name) < 3:
200
+ collection_name = collection_name + 'xyz'
201
+ ## Enforce start and end as alphanumeric character
202
+ if not collection_name[0].isalnum():
203
+ collection_name = 'A' + collection_name[1:]
204
+ if not collection_name[-1].isalnum():
205
+ collection_name = collection_name[:-1] + 'Z'
206
+ print('Filepath: ', filepath)
207
+ print('Collection name: ', collection_name)
208
+ return collection_name
209
+
210
+
211
+ # Initialize database
212
+ def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
213
+ # Create list of documents (when valid)
214
+ list_file_path = [x.name for x in list_file_obj if x is not None]
215
+ # Create collection_name for vector database
216
+ progress(0.1, desc="Creating collection name...")
217
+ collection_name = create_collection_name(list_file_path[0])
218
+ progress(0.25, desc="Loading document...")
219
+ # Load document and create splits
220
+ doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
221
+ # Create or load vector database
222
+ progress(0.5, desc="Generating vector database...")
223
+ # global vector_db
224
+ vector_db = create_db(doc_splits, collection_name)
225
+ progress(0.9, desc="Done!")
226
+ return vector_db, collection_name, "Complete!"
227
+
228
+
229
+ def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
230
+ # print("llm_option",llm_option)
231
+ llm_name = list_llm[llm_option]
232
+ print("llm_name: ",llm_name)
233
+ qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
234
+ return qa_chain, "Complete!"
235
+
236
+
237
+ def format_chat_history(message, chat_history):
238
+ formatted_chat_history = []
239
+ for user_message, bot_message in chat_history:
240
+ formatted_chat_history.append(f"User: {user_message}")
241
+ formatted_chat_history.append(f"Assistant: {bot_message}")
242
+ return formatted_chat_history
243
+
244
+
245
+ def conversation(qa_chain, message, history):
246
+ formatted_chat_history = format_chat_history(message, history)
247
+ #print("formatted_chat_history",formatted_chat_history)
248
+
249
+ # Generate response using QA chain
250
+ response = qa_chain({"question": message, "chat_history": formatted_chat_history})
251
+ response_answer = response["answer"]
252
+ if response_answer.find("Helpful Answer:") != -1:
253
+ response_answer = response_answer.split("Helpful Answer:")[-1]
254
+ response_sources = response["source_documents"]
255
+ response_source1 = response_sources[0].page_content.strip()
256
+ response_source2 = response_sources[1].page_content.strip()
257
+ response_source3 = response_sources[2].page_content.strip()
258
+ # Langchain sources are zero-based
259
+ response_source1_page = response_sources[0].metadata["page"] + 1
260
+ response_source2_page = response_sources[1].metadata["page"] + 1
261
+ response_source3_page = response_sources[2].metadata["page"] + 1
262
+ # print ('chat response: ', response_answer)
263
+ # print('DB source', response_sources)
264
+
265
+ # Append user message and response to chat history
266
+ new_history = history + [(message, response_answer)]
267
+ # return gr.update(value=""), new_history, response_sources[0], response_sources[1]
268
+ return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
269
+
270
+
271
+ def upload_file(file_obj):
272
+ list_file_path = []
273
+ for idx, file in enumerate(file_obj):
274
+ file_path = file_obj.name
275
+ list_file_path.append(file_path)
276
+ # print(file_path)
277
+ # initialize_database(file_path, progress)
278
+ return list_file_path
279
+
280
+
281
+ def demo():
282
+ with gr.Blocks(theme="base") as demo:
283
+ vector_db = gr.State()
284
+ qa_chain = gr.State()
285
+ collection_name = gr.State()
286
+
287
+ gr.Markdown(
288
+ """<center><h2>PDF-based chatbot</center></h2>
289
+ <h3>Ask any questions about your PDF documents</h3>""")
290
+ gr.Markdown(
291
+ """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
292
+ The user interface explicitely shows multiple steps to help understand the RAG workflow.
293
+ This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
294
+ <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
295
+ """)
296
+
297
+ with gr.Tab("Step 1 - Upload PDF"):
298
+ with gr.Row():
299
+ document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
300
+ # upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
301
+
302
+ with gr.Tab("Step 2 - Process document"):
303
+ with gr.Row():
304
+ db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
305
+ with gr.Accordion("Advanced options - Document text splitter", open=False):
306
+ with gr.Row():
307
+ slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
308
+ with gr.Row():
309
+ slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
310
+ with gr.Row():
311
+ db_progress = gr.Textbox(label="Vector database initialization", value="None")
312
+ with gr.Row():
313
+ db_btn = gr.Button("Generate vector database")
314
+
315
+ with gr.Tab("Step 3 - Initialize QA chain"):
316
+ with gr.Row():
317
+ llm_btn = gr.Radio(list_llm_simple, \
318
+ label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
319
+ with gr.Accordion("Advanced options - LLM model", open=False):
320
+ with gr.Row():
321
+ slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
322
+ with gr.Row():
323
+ slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
324
+ with gr.Row():
325
+ slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
326
+ with gr.Row():
327
+ llm_progress = gr.Textbox(value="None",label="QA chain initialization")
328
+ with gr.Row():
329
+ qachain_btn = gr.Button("Initialize Question Answering chain")
330
+
331
+ with gr.Tab("Step 4 - Chatbot"):
332
+ chatbot = gr.Chatbot(height=300)
333
+ with gr.Accordion("Advanced - Document references", open=False):
334
+ with gr.Row():
335
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
336
+ source1_page = gr.Number(label="Page", scale=1)
337
+ with gr.Row():
338
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
339
+ source2_page = gr.Number(label="Page", scale=1)
340
+ with gr.Row():
341
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
342
+ source3_page = gr.Number(label="Page", scale=1)
343
+ with gr.Row():
344
+ msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
345
+ with gr.Row():
346
+ submit_btn = gr.Button("Submit message")
347
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
348
+
349
+ # Preprocessing events
350
+ #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
351
+ db_btn.click(initialize_database, \
352
+ inputs=[document, slider_chunk_size, slider_chunk_overlap], \
353
+ outputs=[vector_db, collection_name, db_progress])
354
+ qachain_btn.click(initialize_LLM, \
355
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
356
+ outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
357
+ inputs=None, \
358
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
359
+ queue=False)
360
+
361
+ # Chatbot events
362
+ msg.submit(conversation, \
363
+ inputs=[qa_chain, msg, chatbot], \
364
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
365
+ queue=False)
366
+ submit_btn.click(conversation, \
367
+ inputs=[qa_chain, msg, chatbot], \
368
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
369
+ queue=False)
370
+ clear_btn.click(lambda:[None,"",0,"",0,"",0], \
371
+ inputs=None, \
372
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
373
+ queue=False)
374
+ demo.queue().launch(debug=True)
375
+
376
+
377
+ if __name__ == "__main__":
378
  demo()