File size: 25,978 Bytes
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b00e2
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690b53e
db6a3b7
 
 
 
 
b7b00e2
 
 
 
 
 
db6a3b7
b7b00e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
from typing import *
import numpy as np
import torch
import utils3d
import nvdiffrast.torch as dr
from tqdm import tqdm
import trimesh
import trimesh.visual
import xatlas
import pyvista as pv
from pymeshfix import _meshfix
import igraph
import cv2
from PIL import Image
from .random_utils import sphere_hammersley_sequence
from .render_utils import render_multiview
from ..renderers import GaussianRenderer
from ..representations import Strivec, Gaussian, MeshExtractResult


@torch.no_grad()
def _fill_holes(
    verts,
    faces,
    max_hole_size=0.04,
    max_hole_nbe=32,
    resolution=128,
    num_views=500,
    debug=False,
    verbose=False
):
    """
    Rasterize a mesh from multiple views and remove invisible faces.
    Also includes postprocessing to:
        1. Remove connected components that are have low visibility.
        2. Mincut to remove faces at the inner side of the mesh connected to the outer side with a small hole.

    Args:
        verts (torch.Tensor): Vertices of the mesh. Shape (V, 3).
        faces (torch.Tensor): Faces of the mesh. Shape (F, 3).
        max_hole_size (float): Maximum area of a hole to fill.
        resolution (int): Resolution of the rasterization.
        num_views (int): Number of views to rasterize the mesh.
        verbose (bool): Whether to print progress.
    """
    # Construct cameras
    yaws = []
    pitchs = []
    for i in range(num_views):
        y, p = sphere_hammersley_sequence(i, num_views)
        yaws.append(y)
        pitchs.append(p)
    yaws = torch.tensor(yaws).cuda()
    pitchs = torch.tensor(pitchs).cuda()
    radius = 2.0
    fov = torch.deg2rad(torch.tensor(40)).cuda()
    projection = utils3d.torch.perspective_from_fov_xy(fov, fov, 1, 3)
    views = []
    for (yaw, pitch) in zip(yaws, pitchs):
        orig = torch.tensor([
            torch.sin(yaw) * torch.cos(pitch),
            torch.cos(yaw) * torch.cos(pitch),
            torch.sin(pitch),
        ]).cuda().float() * radius
        view = utils3d.torch.view_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda())
        views.append(view)
    views = torch.stack(views, dim=0)

    # Rasterize
    visblity = torch.zeros(faces.shape[0], dtype=torch.int32, device=verts.device)
    rastctx = utils3d.torch.RastContext(backend='cuda')
    for i in tqdm(range(views.shape[0]), total=views.shape[0], disable=not verbose, desc='Rasterizing'):
        view = views[i]
        buffers = utils3d.torch.rasterize_triangle_faces(
            rastctx, verts[None], faces, resolution, resolution, view=view, projection=projection
        )
        face_id = buffers['face_id'][0][buffers['mask'][0] > 0.95] - 1
        face_id = torch.unique(face_id).long()
        visblity[face_id] += 1
    visblity = visblity.float() / num_views
    
    # Mincut
    ## construct outer faces
    edges, face2edge, edge_degrees = utils3d.torch.compute_edges(faces)
    boundary_edge_indices = torch.nonzero(edge_degrees == 1).reshape(-1)
    connected_components = utils3d.torch.compute_connected_components(faces, edges, face2edge)
    outer_face_indices = torch.zeros(faces.shape[0], dtype=torch.bool, device=faces.device)
    for i in range(len(connected_components)):
        outer_face_indices[connected_components[i]] = visblity[connected_components[i]] > min(max(visblity[connected_components[i]].quantile(0.75).item(), 0.25), 0.5)
    outer_face_indices = outer_face_indices.nonzero().reshape(-1)
    
    ## construct inner faces
    inner_face_indices = torch.nonzero(visblity == 0).reshape(-1)
    if verbose:
        tqdm.write(f'Found {inner_face_indices.shape[0]} invisible faces')
    if inner_face_indices.shape[0] == 0:
        return verts, faces
    
    ## Construct dual graph (faces as nodes, edges as edges)
    dual_edges, dual_edge2edge = utils3d.torch.compute_dual_graph(face2edge)
    dual_edge2edge = edges[dual_edge2edge]
    dual_edges_weights = torch.norm(verts[dual_edge2edge[:, 0]] - verts[dual_edge2edge[:, 1]], dim=1)
    if verbose:
        tqdm.write(f'Dual graph: {dual_edges.shape[0]} edges')

    ## solve mincut problem
    ### construct main graph
    g = igraph.Graph()
    g.add_vertices(faces.shape[0])
    g.add_edges(dual_edges.cpu().numpy())
    g.es['weight'] = dual_edges_weights.cpu().numpy()
    
    ### source and target
    g.add_vertex('s')
    g.add_vertex('t')
    
    ### connect invisible faces to source
    g.add_edges([(f, 's') for f in inner_face_indices], attributes={'weight': torch.ones(inner_face_indices.shape[0], dtype=torch.float32).cpu().numpy()})
    
    ### connect outer faces to target
    g.add_edges([(f, 't') for f in outer_face_indices], attributes={'weight': torch.ones(outer_face_indices.shape[0], dtype=torch.float32).cpu().numpy()})
                
    ### solve mincut
    cut = g.mincut('s', 't', (np.array(g.es['weight']) * 1000).tolist())
    remove_face_indices = torch.tensor([v for v in cut.partition[0] if v < faces.shape[0]], dtype=torch.long, device=faces.device)
    if verbose:
        tqdm.write(f'Mincut solved, start checking the cut')
    
    ### check if the cut is valid with each connected component
    to_remove_cc = utils3d.torch.compute_connected_components(faces[remove_face_indices])
    if debug:
        tqdm.write(f'Number of connected components of the cut: {len(to_remove_cc)}')
    valid_remove_cc = []
    cutting_edges = []
    for cc in to_remove_cc:
        #### check if the connected component has low visibility
        visblity_median = visblity[remove_face_indices[cc]].median()
        if debug:
            tqdm.write(f'visblity_median: {visblity_median}')
        if visblity_median > 0.25:
            continue
        
        #### check if the cuting loop is small enough
        cc_edge_indices, cc_edges_degree = torch.unique(face2edge[remove_face_indices[cc]], return_counts=True)
        cc_boundary_edge_indices = cc_edge_indices[cc_edges_degree == 1]
        cc_new_boundary_edge_indices = cc_boundary_edge_indices[~torch.isin(cc_boundary_edge_indices, boundary_edge_indices)]
        if len(cc_new_boundary_edge_indices) > 0:
            cc_new_boundary_edge_cc = utils3d.torch.compute_edge_connected_components(edges[cc_new_boundary_edge_indices])
            cc_new_boundary_edges_cc_center = [verts[edges[cc_new_boundary_edge_indices[edge_cc]]].mean(dim=1).mean(dim=0) for edge_cc in cc_new_boundary_edge_cc]
            cc_new_boundary_edges_cc_area = []
            for i, edge_cc in enumerate(cc_new_boundary_edge_cc):
                _e1 = verts[edges[cc_new_boundary_edge_indices[edge_cc]][:, 0]] - cc_new_boundary_edges_cc_center[i]
                _e2 = verts[edges[cc_new_boundary_edge_indices[edge_cc]][:, 1]] - cc_new_boundary_edges_cc_center[i]
                cc_new_boundary_edges_cc_area.append(torch.norm(torch.cross(_e1, _e2, dim=-1), dim=1).sum() * 0.5)
            if debug:
                cutting_edges.append(cc_new_boundary_edge_indices)
                tqdm.write(f'Area of the cutting loop: {cc_new_boundary_edges_cc_area}')
            if any([l > max_hole_size for l in cc_new_boundary_edges_cc_area]):
                continue
            
        valid_remove_cc.append(cc)
        
    if debug:
        face_v = verts[faces].mean(dim=1).cpu().numpy()
        vis_dual_edges = dual_edges.cpu().numpy()
        vis_colors = np.zeros((faces.shape[0], 3), dtype=np.uint8)
        vis_colors[inner_face_indices.cpu().numpy()] = [0, 0, 255]
        vis_colors[outer_face_indices.cpu().numpy()] = [0, 255, 0]
        vis_colors[remove_face_indices.cpu().numpy()] = [255, 0, 255]
        if len(valid_remove_cc) > 0:
            vis_colors[remove_face_indices[torch.cat(valid_remove_cc)].cpu().numpy()] = [255, 0, 0]
        utils3d.io.write_ply('dbg_dual.ply', face_v, edges=vis_dual_edges, vertex_colors=vis_colors)
        
        vis_verts = verts.cpu().numpy()
        vis_edges = edges[torch.cat(cutting_edges)].cpu().numpy()
        utils3d.io.write_ply('dbg_cut.ply', vis_verts, edges=vis_edges)
        
    
    if len(valid_remove_cc) > 0:
        remove_face_indices = remove_face_indices[torch.cat(valid_remove_cc)]
        mask = torch.ones(faces.shape[0], dtype=torch.bool, device=faces.device)
        mask[remove_face_indices] = 0
        faces = faces[mask]
        faces, verts = utils3d.torch.remove_unreferenced_vertices(faces, verts)
        if verbose:
            tqdm.write(f'Removed {(~mask).sum()} faces by mincut')
    else:
        if verbose:
            tqdm.write(f'Removed 0 faces by mincut')
            
    mesh = _meshfix.PyTMesh()
    mesh.load_array(verts.cpu().numpy(), faces.cpu().numpy())
    mesh.fill_small_boundaries(nbe=max_hole_nbe, refine=True)
    verts, faces = mesh.return_arrays()
    verts, faces = torch.tensor(verts, device='cuda', dtype=torch.float32), torch.tensor(faces, device='cuda', dtype=torch.int32)

    return verts, faces


def postprocess_mesh(
    vertices: np.array,
    faces: np.array,
    simplify: bool = True,
    simplify_ratio: float = 0.9,
    fill_holes: bool = True,
    fill_holes_max_hole_size: float = 0.04,
    fill_holes_max_hole_nbe: int = 32,
    fill_holes_resolution: int = 1024,
    fill_holes_num_views: int = 1000,
    debug: bool = False,
    verbose: bool = False,
):
    """
    Postprocess a mesh by simplifying, removing invisible faces, and removing isolated pieces.

    Args:
        vertices (np.array): Vertices of the mesh. Shape (V, 3).
        faces (np.array): Faces of the mesh. Shape (F, 3).
        simplify (bool): Whether to simplify the mesh, using quadric edge collapse.
        simplify_ratio (float): Ratio of faces to keep after simplification.
        fill_holes (bool): Whether to fill holes in the mesh.
        fill_holes_max_hole_size (float): Maximum area of a hole to fill.
        fill_holes_max_hole_nbe (int): Maximum number of boundary edges of a hole to fill.
        fill_holes_resolution (int): Resolution of the rasterization.
        fill_holes_num_views (int): Number of views to rasterize the mesh.
        verbose (bool): Whether to print progress.
    """

    if verbose:
        tqdm.write(f'Before postprocess: {vertices.shape[0]} vertices, {faces.shape[0]} faces')

    # Simplify
    if simplify and simplify_ratio > 0:
        mesh = pv.PolyData(vertices, np.concatenate([np.full((faces.shape[0], 1), 3), faces], axis=1))
        mesh = mesh.decimate(simplify_ratio, progress_bar=verbose)
        vertices, faces = mesh.points, mesh.faces.reshape(-1, 4)[:, 1:]
        if verbose:
            tqdm.write(f'After decimate: {vertices.shape[0]} vertices, {faces.shape[0]} faces')

    # Remove invisible faces
    if fill_holes:
        vertices, faces = torch.tensor(vertices).cuda(), torch.tensor(faces.astype(np.int32)).cuda()
        vertices, faces = _fill_holes(
            vertices, faces,
            max_hole_size=fill_holes_max_hole_size,
            max_hole_nbe=fill_holes_max_hole_nbe,
            resolution=fill_holes_resolution,
            num_views=fill_holes_num_views,
            debug=debug,
            verbose=verbose,
        )
        vertices, faces = vertices.cpu().numpy(), faces.cpu().numpy()
        if verbose:
            tqdm.write(f'After remove invisible faces: {vertices.shape[0]} vertices, {faces.shape[0]} faces')

    return vertices, faces


def parametrize_mesh(vertices: np.array, faces: np.array):
    """
    Parametrize a mesh to a texture space, using xatlas.

    Args:
        vertices (np.array): Vertices of the mesh. Shape (V, 3).
        faces (np.array): Faces of the mesh. Shape (F, 3).
    """

    vmapping, indices, uvs = xatlas.parametrize(vertices, faces)

    vertices = vertices[vmapping]
    faces = indices

    return vertices, faces, uvs


def bake_texture(
    vertices: np.array,
    faces: np.array,
    uvs: np.array,
    observations: List[np.array],
    masks: List[np.array],
    extrinsics: List[np.array],
    intrinsics: List[np.array],
    texture_size: int = 2048,
    near: float = 0.1,
    far: float = 10.0,
    mode: Literal['fast', 'opt'] = 'opt',
    lambda_tv: float = 1e-2,
    verbose: bool = False,
):
    """
    Bake texture to a mesh from multiple observations.

    Args:
        vertices (np.array): Vertices of the mesh. Shape (V, 3).
        faces (np.array): Faces of the mesh. Shape (F, 3).
        uvs (np.array): UV coordinates of the mesh. Shape (V, 2).
        observations (List[np.array]): List of observations. Each observation is a 2D image. Shape (H, W, 3).
        masks (List[np.array]): List of masks. Each mask is a 2D image. Shape (H, W).
        extrinsics (List[np.array]): List of extrinsics. Shape (4, 4).
        intrinsics (List[np.array]): List of intrinsics. Shape (3, 3).
        texture_size (int): Size of the texture.
        near (float): Near plane of the camera.
        far (float): Far plane of the camera.
        mode (Literal['fast', 'opt']): Mode of texture baking.
        lambda_tv (float): Weight of total variation loss in optimization.
        verbose (bool): Whether to print progress.
    """
    vertices = torch.tensor(vertices).cuda()
    faces = torch.tensor(faces.astype(np.int32)).cuda()
    uvs = torch.tensor(uvs).cuda()
    observations = [torch.tensor(obs / 255.0).float().cuda() for obs in observations]
    masks = [torch.tensor(m>0).bool().cuda() for m in masks]
    views = [utils3d.torch.extrinsics_to_view(torch.tensor(extr).cuda()) for extr in extrinsics]
    projections = [utils3d.torch.intrinsics_to_perspective(torch.tensor(intr).cuda(), near, far) for intr in intrinsics]

    if mode == 'fast':
        texture = torch.zeros((texture_size * texture_size, 3), dtype=torch.float32).cuda()
        texture_weights = torch.zeros((texture_size * texture_size), dtype=torch.float32).cuda()
        rastctx = utils3d.torch.RastContext(backend='cuda')
        for observation, view, projection in tqdm(zip(observations, views, projections), total=len(observations), disable=not verbose, desc='Texture baking (fast)'):
            with torch.no_grad():
                rast = utils3d.torch.rasterize_triangle_faces(
                    rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection
                )
                uv_map = rast['uv'][0].detach().flip(0)
                mask = rast['mask'][0].detach().bool() & masks[0]
            
            # nearest neighbor interpolation
            uv_map = (uv_map * texture_size).floor().long()
            obs = observation[mask]
            uv_map = uv_map[mask]
            idx = uv_map[:, 0] + (texture_size - uv_map[:, 1] - 1) * texture_size
            texture = texture.scatter_add(0, idx.view(-1, 1).expand(-1, 3), obs)
            texture_weights = texture_weights.scatter_add(0, idx, torch.ones((obs.shape[0]), dtype=torch.float32, device=texture.device))

        mask = texture_weights > 0
        texture[mask] /= texture_weights[mask][:, None]
        texture = np.clip(texture.reshape(texture_size, texture_size, 3).cpu().numpy() * 255, 0, 255).astype(np.uint8)

        # inpaint
        mask = (texture_weights == 0).cpu().numpy().astype(np.uint8).reshape(texture_size, texture_size)
        texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA)

    elif mode == 'opt':
        rastctx = utils3d.torch.RastContext(backend='cuda')
        observations = [observations.flip(0) for observations in observations]
        masks = [m.flip(0) for m in masks]
        _uv = []
        _uv_dr = []
        for observation, view, projection in tqdm(zip(observations, views, projections), total=len(views), disable=not verbose, desc='Texture baking (opt): UV'):
            with torch.no_grad():
                rast = utils3d.torch.rasterize_triangle_faces(
                    rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection
                )
                _uv.append(rast['uv'].detach())
                _uv_dr.append(rast['uv_dr'].detach())

        texture = torch.nn.Parameter(torch.zeros((1, texture_size, texture_size, 3), dtype=torch.float32).cuda())
        optimizer = torch.optim.Adam([texture], betas=(0.5, 0.9), lr=1e-2)

        def exp_anealing(optimizer, step, total_steps, start_lr, end_lr):
            return start_lr * (end_lr / start_lr) ** (step / total_steps)

        def cosine_anealing(optimizer, step, total_steps, start_lr, end_lr):
            return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps))
        
        def tv_loss(texture):
            return torch.nn.functional.l1_loss(texture[:, :-1, :, :], texture[:, 1:, :, :]) + \
                   torch.nn.functional.l1_loss(texture[:, :, :-1, :], texture[:, :, 1:, :])
    
        total_steps = 2500
        with tqdm(total=total_steps, disable=not verbose, desc='Texture baking (opt): optimizing') as pbar:
            for step in range(total_steps):
                optimizer.zero_grad()
                selected = np.random.randint(0, len(views))
                uv, uv_dr, observation, mask = _uv[selected], _uv_dr[selected], observations[selected], masks[selected]
                render = dr.texture(texture, uv, uv_dr)[0]
                loss = torch.nn.functional.l1_loss(render[mask], observation[mask])
                if lambda_tv > 0:
                    loss += lambda_tv * tv_loss(texture)
                loss.backward()
                optimizer.step()
                # annealing
                optimizer.param_groups[0]['lr'] = cosine_anealing(optimizer, step, total_steps, 1e-2, 1e-5)
                pbar.set_postfix({'loss': loss.item()})
                pbar.update()
        texture = np.clip(texture[0].flip(0).detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)
        mask = 1 - utils3d.torch.rasterize_triangle_faces(
            rastctx, (uvs * 2 - 1)[None], faces, texture_size, texture_size
        )['mask'][0].detach().cpu().numpy().astype(np.uint8)
        texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA)
    else:
        raise ValueError(f'Unknown mode: {mode}')

    return texture


def to_glb(
    app_rep: Union[Strivec, Gaussian],
    mesh: MeshExtractResult,
    simplify: float = 0.95,
    fill_holes: bool = True,
    fill_holes_max_size: float = 0.04,
    texture_size: int = 1024,
    debug: bool = False,
    verbose: bool = True,
) -> trimesh.Trimesh:
    """
    Convert a generated asset to a glb file.

    Args:
        app_rep (Union[Strivec, Gaussian]): Appearance representation.
        mesh (MeshExtractResult): Extracted mesh.
        simplify (float): Ratio of faces to remove in simplification.
        fill_holes (bool): Whether to fill holes in the mesh.
        fill_holes_max_size (float): Maximum area of a hole to fill.
        texture_size (int): Size of the texture.
        debug (bool): Whether to print debug information.
        verbose (bool): Whether to print progress.
    """
    vertices = mesh.vertices.cpu().numpy()
    faces = mesh.faces.cpu().numpy()
    
    # mesh postprocess
    vertices, faces = postprocess_mesh(
        vertices, faces,
        simplify=simplify > 0,
        simplify_ratio=simplify,
        fill_holes=fill_holes,
        fill_holes_max_hole_size=fill_holes_max_size,
        fill_holes_max_hole_nbe=int(250 * np.sqrt(1-simplify)),
        fill_holes_resolution=1024,
        fill_holes_num_views=1000,
        debug=debug,
        verbose=verbose,
    )

    # parametrize mesh
    vertices, faces, uvs = parametrize_mesh(vertices, faces)

    # bake texture
    observations, extrinsics, intrinsics = render_multiview(app_rep, resolution=1024, nviews=100)
    masks = [np.any(observation > 0, axis=-1) for observation in observations]
    extrinsics = [extrinsics[i].cpu().numpy() for i in range(len(extrinsics))]
    intrinsics = [intrinsics[i].cpu().numpy() for i in range(len(intrinsics))]
    texture = bake_texture(
        vertices, faces, uvs,
        observations, masks, extrinsics, intrinsics,
        texture_size=texture_size, mode='opt',
        lambda_tv=0.01,
        verbose=verbose
    )
    texture = Image.fromarray(texture)

    # rotate mesh (from z-up to y-up)
    vertices = vertices @ np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
    material = trimesh.visual.material.PBRMaterial(
        roughnessFactor=1.0,
        baseColorTexture=texture,
        baseColorFactor=np.array([255, 255, 255, 255], dtype=np.uint8)
    )
    mesh = trimesh.Trimesh(vertices, faces, visual=trimesh.visual.TextureVisuals(uv=uvs, material=material))
    return mesh


def simplify_gs(
    gs: Gaussian,
    simplify: float = 0.95,
    verbose: bool = True,
):
    """
    Simplify 3D Gaussians
    NOTE: this function is not used in the current implementation for the unsatisfactory performance.
    
    Args:
        gs (Gaussian): 3D Gaussian.
        simplify (float): Ratio of Gaussians to remove in simplification.
    """
    if simplify <= 0:
        return gs
    
    # simplify
    observations, extrinsics, intrinsics = render_multiview(gs, resolution=1024, nviews=100)
    observations = [torch.tensor(obs / 255.0).float().cuda().permute(2, 0, 1) for obs in observations]
    
    # Following https://arxiv.org/pdf/2411.06019
    renderer = GaussianRenderer({
            "resolution": 1024,
            "near": 0.8,
            "far": 1.6,
            "ssaa": 1,
            "bg_color": (0,0,0),
        })
    new_gs = Gaussian(**gs.init_params)
    new_gs._features_dc = gs._features_dc.clone()
    new_gs._features_rest = gs._features_rest.clone() if gs._features_rest is not None else None
    new_gs._opacity = torch.nn.Parameter(gs._opacity.clone())
    new_gs._rotation = torch.nn.Parameter(gs._rotation.clone())
    new_gs._scaling = torch.nn.Parameter(gs._scaling.clone())
    new_gs._xyz = torch.nn.Parameter(gs._xyz.clone())
    
    start_lr = [1e-4, 1e-3, 5e-3, 0.025]
    end_lr = [1e-6, 1e-5, 5e-5, 0.00025]
    optimizer = torch.optim.Adam([
        {"params": new_gs._xyz, "lr": start_lr[0]},
        {"params": new_gs._rotation, "lr": start_lr[1]},
        {"params": new_gs._scaling, "lr": start_lr[2]},
        {"params": new_gs._opacity, "lr": start_lr[3]},
    ], lr=start_lr[0])
    
    def exp_anealing(optimizer, step, total_steps, start_lr, end_lr):
            return start_lr * (end_lr / start_lr) ** (step / total_steps)

    def cosine_anealing(optimizer, step, total_steps, start_lr, end_lr):
        return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps))
    
    _zeta = new_gs.get_opacity.clone().detach().squeeze()
    _lambda = torch.zeros_like(_zeta)
    _delta = 1e-7
    _interval = 10
    num_target = int((1 - simplify) * _zeta.shape[0])
    
    with tqdm(total=2500, disable=not verbose, desc='Simplifying Gaussian') as pbar:
        for i in range(2500):
            # prune
            if i % 100 == 0:
                mask = new_gs.get_opacity.squeeze() > 0.05
                mask = torch.nonzero(mask).squeeze()
                new_gs._xyz = torch.nn.Parameter(new_gs._xyz[mask])
                new_gs._rotation = torch.nn.Parameter(new_gs._rotation[mask])
                new_gs._scaling = torch.nn.Parameter(new_gs._scaling[mask])
                new_gs._opacity = torch.nn.Parameter(new_gs._opacity[mask])
                new_gs._features_dc = new_gs._features_dc[mask]
                new_gs._features_rest = new_gs._features_rest[mask] if new_gs._features_rest is not None else None
                _zeta = _zeta[mask]
                _lambda = _lambda[mask]
                # update optimizer state
                for param_group, new_param in zip(optimizer.param_groups, [new_gs._xyz, new_gs._rotation, new_gs._scaling, new_gs._opacity]):
                    stored_state = optimizer.state[param_group['params'][0]]
                    if 'exp_avg' in stored_state:
                        stored_state['exp_avg'] = stored_state['exp_avg'][mask]
                        stored_state['exp_avg_sq'] = stored_state['exp_avg_sq'][mask]
                    del optimizer.state[param_group['params'][0]]
                    param_group['params'][0] = new_param
                    optimizer.state[param_group['params'][0]] = stored_state

            opacity = new_gs.get_opacity.squeeze()
            
            # sparisfy
            if i % _interval == 0:
                _zeta = _lambda + opacity.detach()
                if opacity.shape[0] > num_target:
                    index = _zeta.topk(num_target)[1]
                    _m = torch.ones_like(_zeta, dtype=torch.bool)
                    _m[index] = 0
                    _zeta[_m] = 0
                _lambda = _lambda + opacity.detach() - _zeta
            
            # sample a random view
            view_idx = np.random.randint(len(observations))
            observation = observations[view_idx]
            extrinsic = extrinsics[view_idx]
            intrinsic = intrinsics[view_idx]
            
            color = renderer.render(new_gs, extrinsic, intrinsic)['color']
            rgb_loss = torch.nn.functional.l1_loss(color, observation)
            loss = rgb_loss + \
                   _delta * torch.sum(torch.pow(_lambda + opacity - _zeta, 2))
            
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            # update lr
            for j in range(len(optimizer.param_groups)):
                optimizer.param_groups[j]['lr'] = cosine_anealing(optimizer, i, 2500, start_lr[j], end_lr[j])
            
            pbar.set_postfix({'loss': rgb_loss.item(), 'num': opacity.shape[0], 'lambda': _lambda.mean().item()})
            pbar.update()
            
    new_gs._xyz = new_gs._xyz.data
    new_gs._rotation = new_gs._rotation.data
    new_gs._scaling = new_gs._scaling.data
    new_gs._opacity = new_gs._opacity.data
    
    return new_gs