Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. | |
import torch | |
from ...modules.sparse import SparseTensor | |
from easydict import EasyDict as edict | |
from .utils_cube import * | |
try: | |
from .flexicube import FlexiCubes | |
except: | |
print("Please install kaolin and diso to use the mesh extractor.") | |
class MeshExtractResult: | |
def __init__(self, | |
vertices, | |
faces, | |
vertex_attrs=None, | |
res=64 | |
): | |
self.vertices = vertices | |
self.faces = faces.long() | |
self.vertex_attrs = vertex_attrs | |
self.face_normal = self.comput_face_normals(vertices, faces) | |
self.res = res | |
self.success = (vertices.shape[0] != 0 and faces.shape[0] != 0) | |
# training only | |
self.tsdf_v = None | |
self.tsdf_s = None | |
self.reg_loss = None | |
def comput_face_normals(self, verts, faces): | |
i0 = faces[..., 0].long() | |
i1 = faces[..., 1].long() | |
i2 = faces[..., 2].long() | |
v0 = verts[i0, :] | |
v1 = verts[i1, :] | |
v2 = verts[i2, :] | |
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1) | |
face_normals = torch.nn.functional.normalize(face_normals, dim=1) | |
# print(face_normals.min(), face_normals.max(), face_normals.shape) | |
return face_normals[:, None, :].repeat(1, 3, 1) | |
def comput_v_normals(self, verts, faces): | |
i0 = faces[..., 0].long() | |
i1 = faces[..., 1].long() | |
i2 = faces[..., 2].long() | |
v0 = verts[i0, :] | |
v1 = verts[i1, :] | |
v2 = verts[i2, :] | |
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1) | |
v_normals = torch.zeros_like(verts) | |
v_normals.scatter_add_(0, i0[..., None].repeat(1, 3), face_normals) | |
v_normals.scatter_add_(0, i1[..., None].repeat(1, 3), face_normals) | |
v_normals.scatter_add_(0, i2[..., None].repeat(1, 3), face_normals) | |
v_normals = torch.nn.functional.normalize(v_normals, dim=1) | |
return v_normals | |
class SparseFeatures2Mesh: | |
def __init__(self, device="cuda", res=64, use_color=True): | |
''' | |
a model to generate a mesh from sparse features structures using flexicube | |
''' | |
super().__init__() | |
self.device=device | |
self.res = res | |
self.mesh_extractor = FlexiCubes(device=device) | |
self.sdf_bias = -1.0 / res | |
verts, cube = construct_dense_grid(self.res, self.device) | |
self.reg_c = cube.to(self.device) | |
self.reg_v = verts.to(self.device) | |
self.use_color = use_color | |
self._calc_layout() | |
def _calc_layout(self): | |
LAYOUTS = { | |
'sdf': {'shape': (8, 1), 'size': 8}, | |
'deform': {'shape': (8, 3), 'size': 8 * 3}, | |
'weights': {'shape': (21,), 'size': 21} | |
} | |
if self.use_color: | |
''' | |
6 channel color including normal map | |
''' | |
LAYOUTS['color'] = {'shape': (8, 6,), 'size': 8 * 6} | |
self.layouts = edict(LAYOUTS) | |
start = 0 | |
for k, v in self.layouts.items(): | |
v['range'] = (start, start + v['size']) | |
start += v['size'] | |
self.feats_channels = start | |
def get_layout(self, feats : torch.Tensor, name : str): | |
if name not in self.layouts: | |
return None | |
return feats[:, self.layouts[name]['range'][0]:self.layouts[name]['range'][1]].reshape(-1, *self.layouts[name]['shape']) | |
def __call__(self, cubefeats : SparseTensor, training=False): | |
""" | |
Generates a mesh based on the specified sparse voxel structures. | |
Args: | |
cube_attrs [Nx21] : Sparse Tensor attrs about cube weights | |
verts_attrs [Nx10] : [0:1] SDF [1:4] deform [4:7] color [7:10] normal | |
Returns: | |
return the success tag and ni you loss, | |
""" | |
# add sdf bias to verts_attrs | |
coords = cubefeats.coords[:, 1:] | |
feats = cubefeats.feats | |
sdf, deform, color, weights = [self.get_layout(feats, name) for name in ['sdf', 'deform', 'color', 'weights']] | |
sdf += self.sdf_bias | |
v_attrs = [sdf, deform, color] if self.use_color else [sdf, deform] | |
v_pos, v_attrs, reg_loss = sparse_cube2verts(coords, torch.cat(v_attrs, dim=-1), training=training) | |
v_attrs_d = get_dense_attrs(v_pos, v_attrs, res=self.res+1, sdf_init=True) | |
weights_d = get_dense_attrs(coords, weights, res=self.res, sdf_init=False) | |
if self.use_color: | |
sdf_d, deform_d, colors_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4], v_attrs_d[..., 4:] | |
else: | |
sdf_d, deform_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4] | |
colors_d = None | |
x_nx3 = get_defomed_verts(self.reg_v, deform_d, self.res) | |
vertices, faces, L_dev, colors = self.mesh_extractor( | |
voxelgrid_vertices=x_nx3, | |
scalar_field=sdf_d, | |
cube_idx=self.reg_c, | |
resolution=self.res, | |
beta=weights_d[:, :12], | |
alpha=weights_d[:, 12:20], | |
gamma_f=weights_d[:, 20], | |
voxelgrid_colors=colors_d, | |
training=training) | |
mesh = MeshExtractResult(vertices=vertices, faces=faces, vertex_attrs=colors, res=self.res) | |
if training: | |
if mesh.success: | |
reg_loss += L_dev.mean() * 0.5 | |
reg_loss += (weights[:,:20]).abs().mean() * 0.2 | |
mesh.reg_loss = reg_loss | |
mesh.tsdf_v = get_defomed_verts(v_pos, v_attrs[:, 1:4], self.res) | |
mesh.tsdf_s = v_attrs[:, 0] | |
return mesh | |