Spaces:
Build error
Build error
File size: 12,679 Bytes
6a89c74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import cv2
import torch
import numpy as np
import gradio as gr
from PIL import Image
from torchvision.ops import box_convert
from detectron2.config import LazyConfig, instantiate
from detectron2.checkpoint import DetectionCheckpointer
from segment_anything import sam_model_registry, SamPredictor
import groundingdino.datasets.transforms as T
from groundingdino.util.inference import load_model as dino_load_model, predict as dino_predict, annotate as dino_annotate
models = {
'vit_h': './pretrained/sam_vit_h_4b8939.pth',
'vit_b': './pretrained/sam_vit_b_01ec64.pth'
}
vitmatte_models = {
'vit_b': './pretrained/ViTMatte_B_DIS.pth',
}
vitmatte_config = {
'vit_b': './configs/matte_anything.py',
}
grounding_dino = {
'config': './GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py',
'weight': './pretrained/groundingdino_swint_ogc.pth'
}
def generate_checkerboard_image(height, width, num_squares):
num_squares_h = num_squares
square_size_h = height // num_squares_h
square_size_w = square_size_h
num_squares_w = width // square_size_w
new_height = num_squares_h * square_size_h
new_width = num_squares_w * square_size_w
image = np.zeros((new_height, new_width), dtype=np.uint8)
for i in range(num_squares_h):
for j in range(num_squares_w):
start_x = j * square_size_w
start_y = i * square_size_h
color = 255 if (i + j) % 2 == 0 else 200
image[start_y:start_y + square_size_h, start_x:start_x + square_size_w] = color
image = cv2.resize(image, (width, height))
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
return image
def init_segment_anything(model_type):
"""
Initialize the segmenting anything with model_type in ['vit_b', 'vit_l', 'vit_h']
"""
sam = sam_model_registry[model_type](checkpoint=models[model_type]).to(device)
predictor = SamPredictor(sam)
return predictor
def init_vitmatte(model_type):
"""
Initialize the vitmatte with model_type in ['vit_s', 'vit_b']
"""
cfg = LazyConfig.load(vitmatte_config[model_type])
vitmatte = instantiate(cfg.model)
vitmatte.to(device)
vitmatte.eval()
DetectionCheckpointer(vitmatte).load(vitmatte_models[model_type])
return vitmatte
def generate_trimap(mask, erode_kernel_size=10, dilate_kernel_size=10):
erode_kernel = np.ones((erode_kernel_size, erode_kernel_size), np.uint8)
dilate_kernel = np.ones((dilate_kernel_size, dilate_kernel_size), np.uint8)
eroded = cv2.erode(mask, erode_kernel, iterations=5)
dilated = cv2.dilate(mask, dilate_kernel, iterations=5)
trimap = np.zeros_like(mask)
trimap[dilated==255] = 128
trimap[eroded==255] = 255
return trimap
# user click the image to get points, and show the points on the image
def get_point(img, sel_pix, point_type, evt: gr.SelectData):
if point_type == 'foreground_point':
sel_pix.append((evt.index, 1)) # append the foreground_point
elif point_type == 'background_point':
sel_pix.append((evt.index, 0)) # append the background_point
else:
sel_pix.append((evt.index, 1)) # default foreground_point
# draw points
for point, label in sel_pix:
cv2.drawMarker(img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
if img[..., 0][0, 0] == img[..., 2][0, 0]: # BGR to RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img if isinstance(img, np.ndarray) else np.array(img)
# undo the selected point
def undo_points(orig_img, sel_pix):
temp = orig_img.copy()
# draw points
if len(sel_pix) != 0:
sel_pix.pop()
for point, label in sel_pix:
cv2.drawMarker(temp, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
if temp[..., 0][0, 0] == temp[..., 2][0, 0]: # BGR to RGB
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
return temp if isinstance(temp, np.ndarray) else np.array(temp)
# once user upload an image, the original image is stored in `original_image`
def store_img(img):
return img, [] # when new image is uploaded, `selected_points` should be empty
def convert_pixels(gray_image, boxes):
converted_image = np.copy(gray_image)
for box in boxes:
x1, y1, x2, y2 = box
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
converted_image[y1:y2, x1:x2][converted_image[y1:y2, x1:x2] == 1] = 0.5
return converted_image
if __name__ == "__main__":
device = 'cuda'
sam_model = 'vit_h'
vitmatte_model = 'vit_b'
colors = [(255, 0, 0), (0, 255, 0)]
markers = [1, 5]
print('Initializing models... Please wait...')
predictor = init_segment_anything(sam_model)
vitmatte = init_vitmatte(vitmatte_model)
grounding_dino = dino_load_model(grounding_dino['config'], grounding_dino['weight'])
def run_inference(input_x, selected_points, erode_kernel_size, dilate_kernel_size):
predictor.set_image(input_x)
if len(selected_points) != 0:
points = torch.Tensor([p for p, _ in selected_points]).to(device).unsqueeze(1)
labels = torch.Tensor([int(l) for _, l in selected_points]).to(device).unsqueeze(1)
transformed_points = predictor.transform.apply_coords_torch(points, input_x.shape[:2])
print(points.size(), transformed_points.size(), labels.size(), input_x.shape, points)
else:
transformed_points, labels = None, None
# predict segmentation according to the boxes
masks, scores, logits = predictor.predict_torch(
point_coords=transformed_points.permute(1, 0, 2),
point_labels=labels.permute(1, 0),
boxes=None,
multimask_output=False,
)
masks = masks.cpu().detach().numpy()
mask_all = np.ones((input_x.shape[0], input_x.shape[1], 3))
for ann in masks:
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
mask_all[ann[0] == True, i] = color_mask[i]
img = input_x / 255 * 0.3 + mask_all * 0.7
# generate alpha matte
torch.cuda.empty_cache()
mask = masks[0][0].astype(np.uint8)*255
trimap = generate_trimap(mask, erode_kernel_size, dilate_kernel_size).astype(np.float32)
trimap[trimap==128] = 0.5
trimap[trimap==255] = 1
dino_transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image_transformed, _ = dino_transform(Image.fromarray(input_x), None)
boxes, logits, phrases = dino_predict(
model=grounding_dino,
image=image_transformed,
caption="glass, lens, crystal, diamond, bubble, bulb, web, grid",
box_threshold=0.5,
text_threshold=0.25,
)
annotated_frame = dino_annotate(image_source=input_x, boxes=boxes, logits=logits, phrases=phrases)
# 把annotated_frame的改成RGB
annotated_frame = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
if boxes.shape[0] == 0:
# no transparent object detected
pass
else:
h, w, _ = input_x.shape
boxes = boxes * torch.Tensor([w, h, w, h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
trimap = convert_pixels(trimap, xyxy)
input = {
"image": torch.from_numpy(input_x).permute(2, 0, 1).unsqueeze(0)/255,
"trimap": torch.from_numpy(trimap).unsqueeze(0).unsqueeze(0),
}
torch.cuda.empty_cache()
alpha = vitmatte(input)['phas'].flatten(0,2)
alpha = alpha.detach().cpu().numpy()
# get a green background
background = generate_checkerboard_image(input_x.shape[0], input_x.shape[1], 8)
# calculate foreground with alpha blending
foreground_alpha = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
# calculate foreground with mask
foreground_mask = input_x * np.expand_dims(mask/255, axis=2).repeat(3,2)/255 + background * (1 - np.expand_dims(mask/255, axis=2).repeat(3,2))/255
foreground_alpha[foreground_alpha>1] = 1
foreground_mask[foreground_mask>1] = 1
# return img, mask_all
trimap[trimap==1] == 0.999
# new background
background_1 = cv2.imread('figs/sea.jpg')
background_2 = cv2.imread('figs/forest.jpg')
background_3 = cv2.imread('figs/sunny.jpg')
background_1 = cv2.resize(background_1, (input_x.shape[1], input_x.shape[0]))
background_2 = cv2.resize(background_2, (input_x.shape[1], input_x.shape[0]))
background_3 = cv2.resize(background_3, (input_x.shape[1], input_x.shape[0]))
# to RGB
background_1 = cv2.cvtColor(background_1, cv2.COLOR_BGR2RGB)
background_2 = cv2.cvtColor(background_2, cv2.COLOR_BGR2RGB)
background_3 = cv2.cvtColor(background_3, cv2.COLOR_BGR2RGB)
# use alpha blending
new_bg_1 = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background_1 * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
new_bg_2 = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background_2 * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
new_bg_3 = input_x * np.expand_dims(alpha, axis=2).repeat(3,2)/255 + background_3 * (1 - np.expand_dims(alpha, axis=2).repeat(3,2))/255
return mask, alpha, foreground_mask, foreground_alpha, new_bg_1, new_bg_2, new_bg_3
with gr.Blocks() as demo:
gr.Markdown(
"""
# <center>Matte Anything🐒 !
"""
)
with gr.Row().style(equal_height=True):
with gr.Column():
# input image
original_image = gr.State(value=None) # store original image without points, default None
input_image = gr.Image(type="numpy")
# point prompt
with gr.Column():
selected_points = gr.State([]) # store points
with gr.Row():
undo_button = gr.Button('Remove Points')
radio = gr.Radio(['foreground_point', 'background_point'], label='point labels')
# run button
button = gr.Button("Start!")
erode_kernel_size = gr.inputs.Slider(minimum=1, maximum=30, step=1, default=10, label="erode_kernel_size")
dilate_kernel_size = gr.inputs.Slider(minimum=1, maximum=30, step=1, default=10, label="dilate_kernel_size")
# show the image with mask
with gr.Tab(label='SAM Mask'):
mask = gr.Image(type='numpy')
# with gr.Tab(label='Trimap'):
# trimap = gr.Image(type='numpy')
with gr.Tab(label='Alpha Matte'):
alpha = gr.Image(type='numpy')
# show only mask
with gr.Tab(label='Foreground by SAM Mask'):
foreground_by_sam_mask = gr.Image(type='numpy')
with gr.Tab(label='Refined by ViTMatte'):
refined_by_vitmatte = gr.Image(type='numpy')
# with gr.Tab(label='Transparency Detection'):
# transparency = gr.Image(type='numpy')
with gr.Tab(label='New Background 1'):
new_bg_1 = gr.Image(type='numpy')
with gr.Tab(label='New Background 2'):
new_bg_2 = gr.Image(type='numpy')
with gr.Tab(label='New Background 3'):
new_bg_3 = gr.Image(type='numpy')
input_image.upload(
store_img,
[input_image],
[original_image, selected_points]
)
input_image.select(
get_point,
[input_image, selected_points, radio],
[input_image],
)
undo_button.click(
undo_points,
[original_image, selected_points],
[input_image]
)
button.click(run_inference, inputs=[original_image, selected_points, erode_kernel_size, dilate_kernel_size], outputs=[mask, alpha, \
foreground_by_sam_mask, refined_by_vitmatte, new_bg_1, new_bg_2, new_bg_3])
with gr.Row():
with gr.Column():
background_image = gr.State(value=None)
demo.launch(share=True) |